SIMM, DIMM, DDR и другие - как отличить модули оперативной памяти по внешнему виду? Модули оперативной памяти Какие существуют модули памяти.

Очень много пользователей компьютера часто задаются вопросом - что такое ОЗУ. Чтобы помочь нашим читателям подробно разобраться с ОЗУ, мы подготовили материал, в котором подробно рассмотрим, где его можно использовать и какие его типы сейчас используются. Также мы рассмотрим немного теории, после чего вы поймете, что собой представляет современная память.

Немного теории

Аббревиатура ОЗУ расшифровывается как - оперативное запоминающее устройство . По сути, это оперативная память, которая в основном используется в ваших компьютерах. Принцип работы любого типа ОЗУ построен на хранении информации в специальных электронных ячейках . Каждая из ячеек имеет размер в 1 байт, то есть в ней можно хранить восемь бит информации. К каждой электронной ячейке прикрепляется специальный адрес . Этот адрес нужен для того, чтобы можно было обращаться к определенной электронной ячейке, считывать и записывать ее содержимое.

Также считывание и запись в электронную ячейку должна осуществляться в любой момент времени. В английском варианте ОЗУ - это RAM . Если мы расшифруем аббревиатуру RAM (Random Access Memory) - память произвольного доступа , то становится ясно, почему считывание и запись в ячейку осуществляется в любой момент времени.

Информация хранится и перезаписывается в электронных ячейках только тогда, когда ваш ПК работает , после его выключения вся информация, которая находится в ОЗУ, стирается. Совокупность электронных ячеек в современной оперативке может достигать объема от 1 ГБ до 32 ГБ. Типы ОЗУ, которые сейчас используются, носят название DRAM и SRAM .

  • Первая, DRAM представляет собой динамическую оперативную память, которая состоит из конденсаторов и транзисторов . Хранение информации в DRAM обусловлено наличием или отсутствием заряда на конденсаторе (1 бит информации), который образуется на полупроводниковом кристалле . Для сохранения информации этот вид памяти требует регенерации . Поэтому это медленная и дешевая память.
  • Вторая, SRAM представляет собой ОЗУ статического типа . Принцип доступа к ячейкам в SRAM основан на статическом триггере, который включает в себя несколько транзисторов. SRAM является дорогой памятью, поэтому используется, в основном, в микроконтроллерах и интегральных микросхемах , в которых объем памяти невелик. Это быстрая память, не требующая регенерации .

Классификация и виды SDRAM в современных компьютерах

Наиболее распространенным подвидом памяти DRAM является синхронная память SDRAM . Первым подтипом памяти SDRAM является DDR SDRAM. Модули оперативной памяти DDR SDRAM появились в конце 1990-х. В то время были популярны компьютеры на базе процессов Pentium. На изображении ниже показана планка формата DDR PC-3200 SODIMM на 512 мегабайт от фирмы GOODRAM.

Приставка SODIMM означает, что память предназначена для ноутбука . В 2003 году на смену DDR SDRAM пришла DDR2 SDRAM . Эта память использовалась в современных компьютерах того времени вплоть до 2010 года, пока ее не вытеснила память следующего поколения. На изображении ниже показана планка формата DDR2 PC2-6400 на 2 гигабайта от фирмы GOODRAM. Каждое поколение памяти демонстрирует все большую скорость обмена данными.

На смену формата DDR2 SDRAM в 2007 году пришел еще более быстрый DDR3 SDRAM . Этот формат по сегодняшний день остается самым популярным, хоть и в спину ему дышит новый формат . Формат DDR3 SDRAM сейчас применяется не только в современных компьютерах, но также в смартфонах , планшетных ПК и бюджетных видеокартах . Также память DDR3 SDRAM используется в игровой приставке Xbox One восьмого поколения от Microsoft. В этой приставке используется 8 гигабайт ОЗУ формата DDR3 SDRAM. На изображении ниже показана память формата DDR3 PC3-10600 на 4 гигабайта от фирмы GOODRAM.


Вы можете установить вышеописанные модули от любого производителя, но лучше всего подойдут эти модули ОЗУ. Они представлены на официальной странице к материнской плате в пункте «Memory Support List », так как их совместимость проверена производителем.


Из примера видно, как легко можно узнать информацию по поводу рассматриваемого системника. Таким же образом подбирается оперативная память для всех остальных компьютерных конфигураций. Также хочется отметить, что на рассмотренной выше конфигурации можно запустить все новейшие игры с самыми высокими настройками графики.

Например, на этой конфигурации запустятся без проблем в разрешении 4K такие новые игры, как Tom Clancy’s The Division , Far Cry Primal , Fallout 4 и множество других, так как подобная система отвечает всем реалиям игрового рынка. Единственным ограничением для такой конфигурации будет ее цена . Примерная цена такого системника без монитора, включая два модуля памяти, корпус и комплектующие, описанные выше, составит порядка 2000 долларов .

Классификация и виды SDRAM в видеокартах

В новых видеокартах и в старых моделях используется тот же тип синхронной памяти SDRAM. В новых и устаревших моделях видеокарт наиболее часто используется такой тип видеопамяти:

  • GDDR2 SDRAM - пропускная способность составляет до 9,6 ГБ/с;
  • GDDR3 SDRAM - пропускная способность составляет до 156.6 ГБ/с;
  • GDDR5 SDRAM - пропускная способность составляет до 370 ГБ/с.

Чтобы узнать тип вашей видеокарты, объем ее ОЗУ и тип памяти, нужно воспользоваться бесплатной утилитой GPU-Z . Например, на изображении ниже изображено окно программы GPU-Z , в котором описаны характеристики видеокарты GeForce GTX 980 Ti .

На смену популярной сегодня GDDR5 SDRAM в ближайшем будущем придет GDDR5X SDRAM . Это новая классификация видеопамяти обещает поднять пропускную способность до 512 ГБ/с . Ответом на вопрос, чего хотят добиться производители от такой большой пропускной способности, достаточно прост. С приходом таких форматов, как 4K и 8K, а также VR устройств производительности нынешних видеокарт уже не хватает.

Разница между ОЗУ и ПЗУ

ПЗУ расшифровывается как постоянное запоминающее устройство . В отличие от оперативной памяти, ПЗУ используют для записи информации, которая будет храниться там постоянно. Например, ПЗУ используют в таких устройствах:

  • Мобильные телефоны;
  • Смартфоны;
  • Микроконтроллеры;
  • ПЗУ БИОСа;
  • Различные бытовые электронные устройства.

Во всех описанных устройствах выше, код для их работы хранится в ПЗУ . ПЗУ является энергонезависимой памятью , поэтому после выключения этих устройств вся информация сохранится в ней - значит это и является главным отличием ПЗУ от ОЗУ.

Подводим итог

В этой статье мы кратко узнали все подробности, как в теории, так и на практике, касающиеся оперативного запоминающего устройства и их классификации, а также рассмотрели, в чем разница между ОЗУ и ПЗУ.

Также наш материал будет особенно полезен тем пользователям ПК, которые хотят узнать свой тип ОЗУ, установленный в компьютере, или узнать какую оперативку нужно применять для различных конфигураций.

Надеемся, наш материал окажется интересным для наших читателей и позволит им решить множество задач, связанных с оперативной памятью.

Видео по теме

Что же она собой представляет, и какими особенностями обладает? И какие виды этой самой оперативной памяти есть? На эти и многие другие вопросы я постараюсь ответить в данной статье.

В оперативной памяти работают запущенные нами программы, процессор сбрасывает обработанные данные, которые вначале копируются в оперативную память, а потом сохраняются на жесткий диск .

Особенность оперативной памяти состоит в том что:

  1. Она обладает быстрой скоростью,чтения и записи данных.
  2. Информация в ней сохраняется только до того момента, пока на модули памяти подаётся напряжение

То есть если вы работали в любой программе: Word, Excel, фоторедакторе, не сохраняя эти данные и в этот момент выключили свет, то с этими данными или внесенными изменениями можно попрощаться.


Типы оперативной памяти

На сегодняшний день существует три основных типа памяти для ПК:

  1. DDR (400 MHz)
  2. DDR 2(533 MHz ,667 MHz, 800 MHz ,1066 MHz)
  3. DDR 3(1333 MHz ,1600MHz, 1800MHz,2000MHz ,2133MHz, 2200MHz, 2400MHz, 2600MHz, 2800MHz, 3000MHz)
  4. В 2014 году появилясь DDR 4 (2133MHz, 2400MHz и выше)

DDR - это самая старая и самая медленная оперативная память, которую можно еще встретить, в продаже. На её базе собирались компьютеры в период с 2003 по 2006 год.

DDR 2- это более скоростная память. Она в 2 раза шустрей чем DDR. На её основе собирались системные блоки с конца 2006 года и по 2011 год. Но сейчас лучше остановится на DDR 3 - так как одна планка объёмом 2 ГБ DDR 2 - стоит ровно в 2 раза дороже чем, планка DDR 3 - такого же объёма.

DDR 3- оперативная память увидела свет в 2007 году. Прирост производительности относительно DDR 2 (800 MHz)составил около 5-7% не так уж и много, но все равно приятно!

- SRAM (Static RAM - статическая RAM) - имеет быстрый доступ к информации и не требует регенерации, однако несколько дороже, чем DRAM. Используется в основном для кэш-памяти и в регистрах.

- DRAM (Dynamic RAM - динамическая RAM) - требует регенерации, в связи с чем время доступа больше, чем у предыдущего вида. Практически все современные модули оперативной памяти для персональных компьютеров имеют такой стандарт.

На рисунке выше показан элемент памяти DRAM. Фактически это микросхема, несколько этих микросхем устанавливаются на пластину.

- S D RAM (Synchronous Dynamic RAM – синхронная динамическая RAM) – подкласс памяти DRAM , который имеет особенность в том, что использует синхронный обмен данными. То есть, позволяет получать команды в не зависимости от того, выполнена была предыдущая команда или нет.

В силу того, что динамическая память дешевле, то именно она и используется для оперативной памяти. Она изготовлена из мельчайших конденсаторов и транзисторов для управления процессом заряда. Физически память выполнена из полупроводникового материала с образованием элементарных ячеек, в которых хранится информация строк от 1 до 4 бит. Строки объединены в матрицы, называемые страницей, которые в свою очередь создают массив, называемый банком. При считывании информации конденсаторы разряжаются и определяется, был ли в нем заряд или нет. Если заряд присутствовал, то конденсатор подзаряжается. Со временем заряд стекает, и время устойчивого хранения измеряется в миллисекундах. В статической памяти на один бит памяти задействовано два транзистора, один включен, другой выключен, они соответствуют двум состояниям памяти. В то же время у динамической памяти используется один транзистор на один бит, поэтому на одной и той же площади размещено больше памяти, однако она будет работать несколько медленнее. Поэтому для кэш-памяти используется статическая память.

Для сохранения информации используется операция перезаписи, которая называется регенерацией памяти , при которой конденсаторы подзаряжаются. Однако центральный процессор имеет доступ к данным в цикле, свободном от регенерации. Для согласования между оперативной памятью и тактовой частотой процессора существует параметр - цикл ожидания (Waitstate), указывающий количество тактов, который должен пропустить процессор между двумя операциями доступа к систем­ной шине. Чем больше количество циклов в данном параметре, тем медленнее работает компьютер. Для установки данного параметра используется программа Setup.

DRAM применялась в основном в компьютере 80286 и частично в 386SX. В настоящее время они используются в качестве составных модулей памяти SIMM, DIMM, которые будут рассмотрены далее.

Модули памяти могут отличаться друг от друга по типу архитектуры (Std или FPM, EDO, BEDO и SDRAM), по типу расположения (DIP, SIMM, DIMM и другие), по способу контроля ошибок. Могут иметь и другие отличия, например, разные номиналы напряжения, параметры регенерации и пр.

Методы контроля ошибок . Модули памяти разделяются на следующие типы:

Без паритета, то есть без проверки на ошибки. Этот вид наиболее распространен, так как память работает довольно надежно;

С паритетом, то есть проверкой на нечетность, при этом при возникновении ошибок посылается сигнал центральному процессору об их наличии;

ЕСС – контроль с кодом, который позволяет восстановить данные в случае ошибки;

EOS – контроль с кодом для восстановления информации при возникновении ошибки и проверки на нечетность;

Модули, которые искусственно выдают бит нечетности путем его пересчета, то есть практически без паритета. Позволяют работать на тех платах, которые требуют паритета.

Проверка четности означает следующее. Каждый байт, как известно, содержит восемь битов. Некоторые виды памяти содержат вместо восьми – девять байт, девятый для проверки на четность, то есть берется сумма первых восьми байт по модулю 2 и это значение помещается в девятый бит. При чтении данных, если сумма не совпадает со значением в девятом бите, то выдается ошибка, которая называется ошибкой четности. Аналогично производится проверка по нечетности, когда в девятый бит заносится значение, противоположное сумме первых восьми бит. Например, если имеется значение в первых восьми битах “00100100”, то сумма равна в двоичной системе 10В. Значение по модулю два равно нулю. При проверке на нечетность, в девятый бит будет помещено значение “1” (противоположное нулю). Для проверки по нечетности, значение будет равно “001001001”. Чаще используют проверку по нечетности, так как обнуление участка памяти выявляется именно данной проверкой (при этом сумма нулей будет четна и равна нулю для всех девяти битов). Можно использовать память с проверкой на четность в системах, которые её не требуют, но не наоборот.

Таким образом, если имеется 9 микросхем, то одна плата с микросхемами служит для проверки четности, 8 - без проверки, то есть число микросхем будет кратно 9 или 8 битам памяти. В последнее время , учитывая надежность выпускаемых микросхем, бит четности не используется (например, для схем 16 Мб один отказ на 2-3 года непрерывной работы). Память с проверкой четности (Parity - четность) используется в системах, где надежность очень критична, то есть в серверах, которые, кроме того, постоянно загружены. В некоторых случаях, когда материнская плата требует присутствия бита четности, можно использовать микросхемы оперативной памяти, которые эмулируют бит четности, то есть фактически не имеют девятый бит и не осуществляют проверку четности.

Существует память, называемая EСС, которая редко используется, но позволяет корректировать ошибки при их возникновении, то есть при возникновении ошибок производит анализ и может восстановить испорченный бит.

Надежность повышается при большей степени интегрированности. Она более высокая из-за того, что имеет меньше соединений , поэтому лучше покупать одну микросхему в 512 Мб, чем четыре по 128 Мб. В данном случае можно использовать не все слоты для оперативной памяти, а лишь некоторые, что позволяет в дальнейшем нарастить память.

Чередование памяти организовано таким образом, чтобы при совершении регенерации в одном банке (при этом с ним нельзя работать) другой банк позволял выполнить операции чтения/записи. При этом смежные блоки данных находятся в разных банках. В силу того, что часто происходит чтение последовательных данных, используются разные банки при нескольких операциях чтения/записи.

Разбиение памяти на страницы . Адресация организована подобно таблице, где каждый элемент таблицы соответствует элементу памяти в компьютере, то есть для обращения нужно указать сначала номер строки, затем столбца. В случае, когда следующее данное находится рядом, адреса строк могут совпадать, поэтому при операции с соседней ячейкой указывается только адрес столбца, что повышает быстродействие памяти.

Разделяемая память . Память, к которой могут обращаться разные устройства. Например, разделяемая память адаптера позволяет допускать обращения к ней как со стороны системной шины, так и со стороны адаптера.

Теневая память . В силу того, что данные, которые находятся в BIOS, считываются довольно медленно, а могут требоваться часто, они копируются в область оперативной памяти и далее, при работе операционной системы, считываются оттуда, а не из BIOS. Теневая память может быть реализована как программными, так и аппаратными методами.

Нестандартная память . В компьютере может встретиться нестандартная память, что часто имеет место в переносных компьютерах. Как правило, среди них распространено много видов, однако требуется приобретать память только того производителя, модули которого используются в компьютере. Покупка других производителей часто бывает дешевле, однако они могут не подойти в силу особых требований . Память для переносных компьютеров несколько дороже, чем для стационарных. Современные модели ноутбуков переходят на использование тех видов памяти, которые используются в стационарных компьютерах.

В разных видах ноутбуков для установки оперативной памяти имеются отверстия в разных частях корпуса, поэтому для них нужно иметь соответствующую инструкцию. В более современных ноутбуках память становится стандартизированной.

Тип архитектуры

Самой первой была архитектура FPM DRAM (Fast Page Mode DRAM - быстрая со страничным способом), имеющая два вида памяти с разным временем доступа: 60 и 70 нсек; микросхемы с доступом 60 нсек работают при частоте системной шины 60, 66 Мгц. FPM называется также стандартной памятью и работает в пакетном режиме чтения цикла 5-3-3-3.

Следующей модификацией памяти является EDO DRAM (Extended Data Output DRAM - расширенный вывод данных DRAM). Быстродействие достигается за счет дополнительных регистров, в которых хранятся данные в течение следующего запроса к микросхеме и которые позволяют начать следующий цикл до того, как закончится предыдущий. Работает на 10-15% быстрее, чем FPM DRAM. Имеет время доступа 50 нсек, 60 нсек (для шины с частотой 66 Мгц) и 70 нсек. Используется на материнских платах с частотой шины до 66 Мгц и процессорами Pentium, реже с 486-процессором. В силу того, что при частоте системной шины более 66 Мгц работает неустойчиво, постепенно ушла с рынка.

EDO обеспечивает конвейеризацию при работе памяти. Она используется в платах SIMM-72 и DIMM, при этом в них не используется проверка на нечетность, но могут запоминаться контрольные суммы ЕСС. Данный тип памяти может использоваться как в оперативной памяти, так и в видеопамяти. Для работы с данным типом нужно, чтобы BIOS мог работать с ними, так что старые материнские платы могут их не поддерживать. Некоторые платы определяют при помощи соответствующего BIOS тип модуля памяти и допускают одновременную установку стандартной и EDO памяти. Достигает при пакетном режиме чтения цикла 5-2-2-2.

BEDO (Burst EDO - пакетный EDO) - позволяет считывать данные блоками или пакетами за один такт. Развилась из SDRAM и работает на частоте системной шины 66 Мгц. В BEDO получили дальнейшее развитие принципы конвейерной обработки. Данная память требует несколько больше времени на выборку первого данного в пакетном режиме, но обеспечивает более быструю выборку следующих данных. Она также используется в платах SIMM-72 и DIMM. Достигает при пакетном режиме чтения цикла 5-1-1-1.

SDRAM (Synchronous DRAM - синхронная DRAM) - обеспечивает конвейерную обработку данных и чередование адресов, что увеличивает ее производительность. Все операции в таких микросхемах синхронизированы с тактовой частотой CPU и работают с тактовыми частотами системной шины до 133 Мгц, причем время рабочего цикла составляет 8-10 нс при частоте системной шины 100 Мгц. Для современных шин существует память РС100, РС133, где цифры указывают частоту системной шины. Работает быстрее, чем EDO DRAM, однако при частоте шины до 66 Мгц разница в производительности не существенна.

Память SDRAM является наиболее перспективной, особенно для больших тактовых частотах системной шины компьютера, которую не может эффективно поддерживать памяти других типов. Данная память устанавливается на платах DIMM или как микросхема на системную или видеоплату. Достигает при пакетном режиме чтения цикла 5-1-1-1.

SDRAM II (DDR SDRAM) позволяет обрабатывать команды доступа параллельно в их независимых банках памяти, что убыстряет время доступа. Данная память ускоряет работу за счет использования переднего фронта и спада импульса в два раза, имеет обозначение РС1600, РС2100, где цифры обозначают количество Мбайт/сек, которые могут быть переданы по шине, соответственно 1 600 Мбайт/сек с использованием системной шины 100 Мгц, а 2100 - для 133 Мгц. Однако они должны поддерживаться чипсетом, об этом можно проконсультироваться в руководстве на материнскую плату. Более подробно о памяти DDR, DDR2, DDR3 рассказано выше.

Память Direct RDRAM является перспективной памятью, на которую перешла компании Intel . Она может работать с тактовой частотой шины 400 Мгц/сек, с пропускной способностью до 1 600 Мгц/сек, позволяя передавать данные на переднем и заднем фронтах импульса, обеспечивает конвейерную выборку данных. Кроме указанных, существует память SLDRAM, которая, как и Direct RDRAM, на частоте 400 Мгц позволяет осуществлять передачу данных до 1 600 байт/сек.

Существуют модификации вышеуказанных типов памяти, например, CDRAM (Cashe RAM), EDRAM (Enhanced RAM) – является памятью DRAM, в которой имеется статическая память, используется как буферная память в модуле. Время доступа к данным в указанных выше видах памяти составляет от 50 до 70 нс.

Кроме того, существуют другие виды памяти, которые устанавливаются на графических (видео) картах (но не для оперативной памяти) – VRAM , SGRAM , GDDR 2, GDDR 3, GDDR 4, GDDR 5 . Где GDDR 2 построен на основе DDR 2, GDDR 3, GDDR 4, GDDR 5 построены на основе DDR 3.

Современные компьютеры используют DDR , DDR 2 и DDR 3.

Виды корпусов, пластин. Установка памяти

Размещение модулей. В старых компьютерах могли использоваться дополнительные карты для увеличения оперативной памяти до 32 мегабайт. Такая память устанавливалась не при помощи DIMM и SIMM модулей, а при помощи специальной карты, подобно звуковой видеокарте . Однако в настоящее время эти карты уже не производятся.

Чтобы не иметь трудностей с установкой и использованием микросхем, память помещается на одной пластине, которая вставляется в специальное гнездо на материнской плате. В старых моделях компьютеров модуль DRAM может быть изготовлен в корпусе с двухряд­ным расположением выводов. При установке и извлечении этих элементов необходимо внимательно следить, чтобы ножки не погнулись. Для выпрямления ножек используют тонкие плоскогубцы.

DIP (Dual In-line Package - корпус с двусторонними выводами) - также старый вид памяти, емкостью до 1 мегабит, находящийся на материнской плате для моделей 8086, 286, 386, а также на графических адаптерах . Сейчас для оперативной памяти они практически не используется. Внешний их вид показан на рисунке ниже. Следующие виды памяти выпускаются в виде пластинок, на которых находятся микросхемы памяти.

Современные микросхемы выпускаются с корпусами: DIP, ZIP с зигзагообразным расположением контактов, иногда выпускаются для видеопамяти, SQJ используется в платах SIMM или для специальных разъемов на видеоплате, TSOP - для установки DIMM на плату.

Модули SIPP (Single Inline Pin Package - корпус с одним рядом проволочных выводов), или SIP (устарел). Чтобы умень­шить место, занимаемое на материнской плате, модули DRAM располагаются на пластине, которая имеет 30 выводов. Внешний вид данной платы показан на рисунке. До применения SIPP использовались модули SIP, но они безнадежно устарели.

На рисунке выше показана плата SIPP, а на рисунке ниже - SIMM.

Модули SIMM (Single Inline Memory Modules - модули памяти в один ряд), в просторечье называемые “симы” с ударением на последнем слоге. Плата SIMM отличается от модуля SIPP тем, что имеет другой вид контактов, расположенных на пластине, что видно на рисунке. Данные модули снабжены микросхемами памяти с 8, 16, 32 и более Мб памяти.

Все микросхемы, которые находятся на платах SIMM, DIMM, припаяны к плате, и заменить их практически невозможно, поэтому при неисправности одного модуля нужно заменять всю плату.

Для 30-контактных модулей SIMM нужно использовать 4 модуля для 486-процессора, так как один модуль имеет разрядность 8 бит (8 х 4 = 32), а для Pentium – 8, чтобы обеспечить 64-разрядность. 72-контактные модули SIMM имеют разрядность 32, поэтому для 486-процессоров нужно установить одну плату, для Pentium – две. Модули DIMM для Pentium устанавливаются по одному на материнскую плату.

Раньше применялись пластины с 30 выводами. В настоящее время модули памяти имеют 72 контакта. Разъем, куда вставляются пластины с памятью, показан на рисунке ниже.

Чтобы ее снять, нужно отогнуть два зажима по краям платы и наклонить плату, после чего вынуть. Стрелками показано, куда необходимо нажимать. Вставка производится в обратном порядке . Плата подносится под углом и переводится в вертикальное поло­жение. Зажимы по краям сами устанавливаются на свое место, как это показано на рисунке ниже.

Если вы собираетесь купить компьютер и на системной плате находится четыре разъема для памяти, жела­тельно выбирать тот компьютер, где заполнены не все слоты, с тем чтобы в дальнейшем можно было добавить другие модули. Лучшим способом проверить работоспособность памяти является установка ее в компьютер и запуск диагностической программы.

Вначале такие модули использовали стандарт SIMM, затем появились модули DIMM . Модуль SIMM позволяет считывать за один раз один байт. При установке нескольких модулей SIMM часто требовалось, чтобы они имели одинаковые характеристики, подчинялись одним сигналам и совпадала скорость выборки. Часто микросхемы с модулями разных компаний или разных типов одной компании не были совместимы с другими.

Модули могут быть односторонними и двухсторонними, при этом односторонние имеют, как правило, микросхемы на одной стороне платы, у двухсторонних, в которых находится два банка, модули расположены на двух сторонах.

Для материнской платы с процессором Pentium используются банки памяти, которые работают с SIMM и DIMM модулями.

DIMM (Dual In-Line Memory Module - упакованная в два ряда на корпусе память) имеет 168, 184, 200 или 240 контактов и меньшее время доступа, чем на платах SIMM. Кроме того, на платах преодолены ограничения на размер оперативной памяти в 128 мегабайт. Теперь она может достигать значительной величины, которая указана в документации на плату. Платы содержат 2 ряда по 92 или 120 контакта (всего 184 или 240, в старых компьютерах - 168). За счет большего числа контактов увеличивается число банков в модуле. В модуле DIMM уже 32 или 64 линии для считывания данных (соответственно 4 или 8 байт) и появилась возможность устанавливать их в разных компьютерах . Кроме того, модули DIMM имеют больше линий заземлений. На плате может располагаться энергонезависимая память, в которой находятся параметры микросхем. Если нужный тип микросхемы отсутствует, то плата не сможет работать с такой памятью. В отличие от плат SIMM , платы DIMM вставляются вертикально. Установка плат этого вида памяти показана в разделе подключения компьютера.

SO DIMM (Small Outline DIMM – малогабаритный DIMM) – платы, на которых имеется 72, 144, 168 или 200 контактов и которые используются для ноутбуков. Данная память имеет 16 независимых каналов памяти и позволяет работать с разными устройствами и программами, которые обращаются в разные области памяти одновременно.

Существует также вид – DDR 2 FB - DIMM , используемый в серверах, RIMM имеет 168, 184 или 242 контакта и металлический экран для защиты контактов от наводок (используется для памяти RIMM , которая почти сошла с производства), MicroDIMM с 60 контактами для субноутбуков и ноутбуков.

Кроме того, существует низкопрофильная (Low profile) память, которая имеет пониженную высоту платы для установки в низкопрофильных корпусах. Отметим также, что некоторые платы, работающие на повышенных частотах могут иметь радиатор в виде пластинок.

Установка памяти. Для установки модулей памяти SIMM нужно вначале снять крышку системного блока, извлечь старые модули (если это необходимо) и установить платы так, как это описано выше. Старые платы могут потребовать установки перемычек при добавлении памяти. Далее нужно закрыть крышкой системный блок. При работе помните об электростатическом электричестве, модули при перевозке из магазина должны находиться в антистатических мешочках, при установке микросхем нельзя касаться пальцами контактов, так как на пальцах имеется жир, который может стать причиной плохого контакта. Устанавливая модули, не нажимайте сильно на них, иначе можно повредить материнскую плату. При неудобствах установки лучше снять материнскую плату. Если модуль не устанавливается, то, может быть, вставляется не той стороной, и в этом случае попробуйте перевернуть модуль. Карты SIMM вставляются наклонно, а платы DIMM - вертикально.

Затем нужно проверить, определила ли система наличие памяти, размер которой можно узнать из программы BIOS. Можно также запустить тестовую программу для проверки установленной памяти , нет ли дефектов в какой-либо микросхеме.

Замечания. Микросхемы памяти существенно меньше, чем корпус, в котором они находятся, однако для того, чтобы было удобно их монтировать, и для соблюдения температурного режима применяется именно такая конструкция.

Карта расширения памяти использовалась для 286 потому, что материнская плата не имела специального слота для памяти. Эта карта подключалась к системной шине и требовала специального драйвера с определенным стандартом, который назывался Lim (Lotus, Intel, Microsoft).

Первые стандартные платы для новых процессоров Pentium имели, как правило, два вида разъемов для оперативной памяти: SIMM и DIMM, каждый из которых называется банком, причем их нумерация начинается с нуля (Банк0, Банк1 и так далее), однако многие платы не позволяют использовать оба эти типа памяти на плате. Банки заполняются последовательно, то есть вначале нужно установить Банк0, затем Банк1. Таким образом, нельзя установить только один Банк1. Можно попробовать определить, какая память находится на пластине: с контролем четности или нет. Если на пластине имеется 8 микросхем, то она без контроля, если девять - то с контролем. Понятно, что это связано с наличием девятого бита в байте, который используется для проверки четности. В настоящее время платы для процессоров Pentium выпускаются только с разъемами DIMM .

Существовала специальная плата-преобразователь, которая вставлялась в разъем SIMM, а в нее модули памяти, то есть, если заняты все разъемы SIMM, то их можно установить на преобразователь и получить свободные разъемы, куда можно добавить дополнительно оперативную память.

Номера банков оперативной памяти иногда маркируют на материнской плате.

При сбоях в работе оперативной памяти следует протереть ластиком контакты и вставить ее снова, затем поменять платы между собой. Если память заработала, то причиной мог быть плохой контакт , так как графическая плата потребляет много энергии и довольно сильно нагревается. Поэтому при установке нужно ее разместить таким образом, чтобы между ней и другими платами было свободное пространство , желательно около вентилятора. При этом нужно проследить, чтобы лопасти вентилятора не касались проводов, иначе он выйдет из строя.

Маркировка. На платах может встретиться маркировка 1/ /9/ /70, которая обозначает 1 - с проверкой четности (9 - число микросхем), 70 - время доступа в наносекундах. Чем оно меньше, тем лучше, но должно поддерживаться всеми устройствами, прежде всего материнской платой.

Последняя цифра часто определяет время доступа в наносекундах, которое может определять как само значение, так и в десять раз меньшее. Например, время доступа в 70 наносекунд может быть маркировано как 70 или просто -7. Значения для SDRAM могут быть –10 (означает 50 нс), –12 (60 нс) и –15 (70 нс).

В новых микросхемах вначале при помощи нескольких символов указывается название компании- производителя , например, M (компания OKI), TMM (Motorola), МТ – Micron, GM – LG и т.д. Каждая из компаний имеет код – вид шифра, о котором можно узнать через систему Интернет, обратившись на страницу компании-изготовителя.

Кэш- память

Оперативная память - не вся память, которая находится в компьютере. Кроме нее существует кэш-память, которая является буфером между центральным процессором и оперативной памятью, о которой уже упоминалось. В центральном процессоре имеется также специальная кэш-память для преобразования линейного адреса в физический, с тем чтобы его повторно не вычислять. Имеется кэш-память для работы с различными устройствами (например, с жестким диском), которая позволяет ускорить операции ввода-вывода, буфер для клавиатуры и пр. Все эти виды памяти не видны и часто не известны даже программисту, поскольку они реализуются на аппаратном уровне.

В этой главе будет рассмотрена кэш-память, работающая с процессором и находящаяся между центральным процессором и оперативной памятью. Применение кэш-памяти может значительно увеличить производительность компьютера, так как уменьшает время простоя процессора. достигается это в силу того, что передача данных от кэша или к нему производится быстрее, нежели к оперативной памяти. Если процессор должен записать данные в оперативную память, то вместо этого происходит запись в кэш-память, а процессор при этом продолжает работать. Далее, независимо от работы процессора, при освобождении системной шины, с помощью кэш-контроллера будет происходить передача данных в оперативную память. При этом имеется возможность не только записи, но и чтения данных из кэш-памяти.

Действие кэш-памяти эффективно за счет того, что программы обрабатывают, как правило, одни и те же данные. Кроме того, команды программы расположены одна за другой или внутри цикла, что увеличивает вероятность присутствия данных в кэш-памяти. Если требуемые данные для чтения находятся в кэш-памяти, то говорят о попадании в нее, если нужные данные не находятся в ней, то их нужно считывать из оперативной памяти и говорят о промахе. В общем, суть кэш-памяти в сохранении образа областей из оперативной памяти, которая работает быстрее.

Принципы организации кэш-памяти. Кэш с прямым отображением (Direct -mapped cache) частичный или наборно-ассоциативный (Set -associative cache). Как он работает? Адрес данного, которое нужно прочитать, делится на три части. Первая называется тэгом , вторая определяет строку, третья столбец. Кэш организован в виде таблицы из строк определенной длины, например, по 1+16=17 байт, где в первой ячейке содержится значение тэга, а далее находится 16 значений данных. Получив адрес (например, 123003Аh), он делится на три части: тэг (123h), номер строки (003h) и номер столбца (Аh). В данном примере приведено условное разбиение, так как размерность чисел может быть другой. По номеру определяется номер строки, в нашем примере он равен 4 (003h , где – 000h -первая строка, 001h -вторая, 002h – третья, 003h - четвертая и т.д.). В начале строки имеется значение тэга, которое сравнивается с тэгом полученного адреса (123h). При их соответствии происходит выборка или запись данного из соответствующей позиции (Аh одиннадцатое значение, также 0h – для первого, 1h – для второго, … Аh для одиннадцатого); если они не соответствуют, то нужного данного в кэш-памяти нет и оно выбирается из оперативной памяти. Данный тип кэш-памяти используется в 386 процессорах.

Полностью ассоциативная архитектура может хранить строку данных в любом месте кэш-памяти. Адрес, по которому данное считывается, делится на две части: тэг и номер в строке. При необходимости считывания или записи происходит проверка тэгов во всей кэш-памяти и данное выбирается, если имеется совпадение. В этом методе требуется уже больше действий для нахождения данного, так как нужно просматривать значения всех тэгов в памяти, то есть больше аппаратных затрат.

Наборно-ассоциативная архитектура использует комбинацию вышеуказанных методов и является наиболее распространенной. В этом случае несколько строк объединяются в так называемые наборы. Адрес делится на три части, третья, как и раньше, определяет номер данного в строке, средняя – номер набора, а первая часть является тэгом. По средней части адреса определяется набор, где ищется строка, которая имеет в начале номер тэга, совпадающий с первой частью адреса данного. Если она имеется, то данные пересылаются из кэш-памяти в центральный процессор, если нет, то операция производится с оперативной памятью.

Многие процедуры используют кэш-память для данных и кэш отдельно для команд центрального процессора. Этот метод называется Гарвардским . Если такого разделения нет, то метод называется Принстонским .

Кроме вышеуказанных методов, кэш-память может быть организована различными способами.

При сквозной записи (Write Through) после запоминания кэш-памяти осуществляется запись в оперативную память. Это самый простой в смысле реализации способ, однако не самый быстрый, так как после записи в кэш-память процессор может продолжить работу, и если ему потребуется шина для получения или записи данных, она будет занята для записи в оперативную память, в результате будет простаивать центральный процессор. Такой метод использовали первые процессоры с кэш-памятью (486), однако наблюдается переход к другим методам.

Метод буферизации сквозной записи (Buffered write through) является усовершенствованием предыдущего метода. При нем центральный процессор записывает несколько данных в буфер и может продолжать работу в то время, когда данные записываются в кэш-память, и эти данные затем будут перенесены в оперативную память независимо от центрального процессора методом сквозной записи.

Метод обратной записи (Write Back) позволяет после записи в кэш-память не записывать данные в оперативную память. Запись в нее будет происходить после записи всей строки во время обновления строк. Этот метод более быстрый и требует больше затрат аппаратных средств. В последнее время наблюдается переход на этот метод в современных процессорах.

В компьютерной литературе порой вкладывается разный смысл в названия кэш-памяти L1, L2. Иногда L1 обозначает кэш-память, находящуюся в процессоре, иногда в картридже. Мы же примем следующее обозначение: L1- кэш-память, которая находится в процессоре, L2 - в картридже, L3 - на материнской плате. На практике может быть иное наименование у разных фирм-производителей центральных процессоров , например, Intel и AMD.

Кэш первого уровня. Кэш-память находится внутри процессора и поэтому обращение к ней происходит с большей скоростью , чем по системной шине. Кэш-память в первых моделях содержала данные и команды в одной области. Потом она стала делиться на две части, одна из которых хранит машинные инструкции, другая - непосредственно данные, что увеличило эффективность работы компьютера. В некоторых процессорах появилась третья область – буфер ассоциативных трансляции для перевода виртуальных адресов в физические. Кэш первого уровня работает на частоте процессора. Объем ее небольшой, до 128 Кбайт.

Кэш второго уровня. Старые процессоры имеют кэш-память, встроенную в специальный картридж, в котором находится также и процессор. Эта память соединена с процессором отдельной шиной, имеющей большую тактовую частоту, чем системная шина, что позволяет эффективнее использовать компьютер. Современная кэш память второго уровня также находится на ядре процессора, осуществляет синхронизацию между ядрами процессора, практически находится между кэшем первого уровня и кэшем третьего уровня.

Кэш третьего уровня. В 486 компьютерах этот вид памяти стал встраиваться на материнскую плату. Эта память в то время называлась кэш-памятью второго уровня. В силу того, что данный кэш работает уже не на внутренней частоте центрального процессора, а на внешней, то скорость передачи данных к данной кэш-памяти ниже, чем к кэшу первого уровня. Это происходит потому, что внутренняя частота выше, чем внешняя. Так как оперативная память и кэш-память третьего уровня работают на одной частоте, а чтение/запись происходит к кэш-памяти за один такт (в старых компьютерах – за 2 и более), то она также имеет преимущества перед оперативной памятью и увеличивает производительность компьютера. Затем кэш третьего уровня стал называться кэш, находящемся на кристалле процессора (Pentium IV , достигая 4 Мб, в современных до 24 мегабайт).

В некоторых компьютерах может использоваться кэш четвертого уровня (обычно для серверов).

Кэш следующего уровня, как правило, больше по размеру, чем кэш предыдущего уровня и частота его медленней, чем у кэша предыдущего уровня.

Проблемы при работе с кэш-памятью. При работе с кэш-памятью могут возникнуть ошибочные ситуации, когда кэш-память еще не записала данные в оперативную память, а другое устройство (например, через канал DMA) пытается считать данные из памяти по этому же адресу, но получает уже старые данные. Чтобы этого не случилось, контроллер снабжен специальной подсистемой, которая определяет, кто обращается в оперативную память. Кроме того, возможен случай, когда в кэш-памяти находятся значения из ROM-памяти (только для чтения). Это реализовано для того, чтобы данные, хранящиеся в ROM-памяти, можно было считывать быстрее, так как они обычно чаще востребованы. Однако использовать кэш-память для записи в ROM нельзя, так как это может привести к ошибкам.

Второй ошибочный случай при работе с кэш-памятью возможен, когда данные из оперативной памяти считываются, а в это время через канал DMA туда же записываются новые данные. Те же проблемы могут возникать при использовании многопроцессорных систем, в которых каждый процессор применяет свою кэш-память. Чтобы не возникало таких случаев, все эти варианты должен отслеживать контроллер кэш-памяти, которому надлежит определить, что и в какой последовательности должно быть записано в оперативную и кэш-память. Однако он не всегда справляется с этими задачами.

Некоторые проблемы снимаются при указании в BIOS тех областей памяти, в которых можно производить буферизацию для кэш-памяти, а в какую - нельзя. При частых ошибках работы кэш-памяти ее можно отключить при помощи соответствующего параметра в BIOS.

Для кэш-памяти используется не динамические, а статические модули памяти. Несколько DIP элементов устанавливаются на материнскую плату. Кэш-память состоит из трех частей: контроллера, памяти для данных и памяти для команд. Первые процессоры с кэш-памятью имели контроллер и одну область памяти как для данных, так и для команд, однако в дальнейшем они стали разделяться. Как правило, кэш-память, располагаемая в процессоре, работает на той же тактовой частоте , что и процессор, на картридже имеет примерно половинную частоту, а на материнской плате - частоту системной шины. В современных компьютерах кэш-память на материнскую плату не устанавливается.

Производительность. Отключение кэш-памяти первого уровня иногда может понизить производительность системы в несколько раз для некоторых видов программ. Как правило, скорость работы данных микросхем бывает 20, 15, 12 нс и меньше, что позволяет выполнять пакетный цикл 2-1-1-1 на частоте 33 Мгц. Использование кэш-памяти 2-го уровня увеличивает производительность системы на 10-20 % (иногда указывается 20-30 %), что зависит от вида программ, которые используются. Практически рост производительности прекращается после 1 Мб, оптимальным является наличие 512 Кб (для кэш-памяти 2-го уровня).

В некоторых книгах рассматривается еще один уровень кэш-памяти, которая определяется фактически как размер буфера, находящегося в оперативной памяти и используемого для улучшения работы с некоторыми периферийными устройствами (жесткий диск, оптические дисководы и другие).

Время доступа не должно быть большим, поэтому используется статистическая память (SRAM). После ее установки необходимо установить пе­реключатели на плате. Так как на разных платах имеются свои виды переключателей, то для установки нужного переключения необходимо иметь документацию на плату.

Как правило, когда вы приобретаете материнскую плату, на ней уже находится кэш-память второго уровня размером 256, 512, 1 Мб памяти. Однако некоторые платы могут иметь гнезда для установки микросхем. Так, может быть установлен разъем COAST (Cache On A Stick – кэш на пластине), которая в настоящий момент не имеет установленных стандартов, поэтому память разных производителей может не соответствовать друг другу и не вставляться в гнездо. Лучше всего покупать материнскую плату вместе с памятью. Второй вид гнезда называется CELP (Card Edge Low Profile - край платы с низким профилем).

Микросхемы для кэш-памяти, так же, как и оперативная память, разбиваются на банки, которых может быть более одного. В банке должна находиться память, соответствующая разрядности системной шины, а максимальный объем ограничен возможностями системной платы . Установленные микросхемы должны быть однотипными, а многие установки параметров задаются через BIOS.

Sync SRAM (Synchronous Static RAM - синхронная статическая RAM), или Sync Burst SRAM, или SB SRAM – память, оптимизированная под пакетный режим операций, работает с временем доступа 8,5-13,5 нсек. Имеет при частоте системной шины более 75 Мгц диаграмму 3-2-2-2, при меньшей – 2-1-1-1.

PB SRAM (The Pipelined Burst Static RAM - конвейерная пакетная статическая RAM) - наиболее современный вид памяти, является развитием Sync SRAM.

Async SRAM (Asynchronous Static RAM - асинхронная статическая RAM) - самый старый вид памяти со временем доступа от 12 до 20 нсек с диаграммой 3-2-2-2 при частоте шины более 33 Мгц. Так как не поддерживает синхронные обращения, то производительность имеет небольшую.

При обращении к оперативной памяти проверяется наличие данных в кэш-памяти (которая работает практически как буфер), где хранятся наиболее часто используемые данные для про­грамм. Эти данные дублируются, так как они находятся и в оперативной памяти, и в кэш-памяти.

Для оперативной памяти в 16 Мб достаточно 512 Кб кэш-памяти. Кэш-память более дорогая, чем оперативная и поэтому используется для определенных целей. Конечно, можно было бы использовать сверхбыструю память как оперативную, но она дороже, чем существующая, а так как при работе вся память практически одновременно не используется, а только некоторые ее части, то, используя кэш-память, мы можем существенно увеличить мощность компьютера.

Тип кэш- памяти определяется материнской платой либо устанавливается при помощи джамперов, используя переключатели, можно устанавливать ее размер. Саму кэш-память можно отключить при помощи BIOS.

Новые поколения процессоров стимулировали разработку более скоростной памяти SDRAM (Synchronous Dynamic Random Access Memory) с тактовой частотой 66 МГц, а модули памяти с такими микросхемами получили название DIMM(Dual In-line Memory Module).
Для использования с процессорами Athlon, а потом и с Pentium 4, было разработано второе поколение микросхем SDRAM - DDR SDRAM (Double Data Rate SDRAM). Технология DDR SDRAM позволяет передавать данные по обоим фронтам каждого тактового импульса, что предоставляет возможность удвоить пропускную способность памяти. При дальнейшем развитии этой технологии в микросхемах DDR2 SDRAM удалось за один тактовый импульс передавать уже 4 порции данных. Причем следует отметить, что увеличение производительности происходит за счет оптимизации процесса адресации и чтения/записи ячеек памяти, а вот тактовая частота работы запоминающей матрицы не изменяется. Поэтому общая производительность компьютера не увеличивается в два и четыре раза, а всего на десятки процентов. На рис. показаны частотные принципы работы микросхем SDRAM различных поколений.

Существуют следующие типы DIMM:

    • 72-pin SO-DIMM (Small Outline Dual In-line Memory Module) - используется для FPM DRAM (Fast Page Mode Dynamic Random Access Memory) и EDO DRAM (Extended Data Out Dynamic Random Access Memory)

    • 100-pin DIMM - используется для принтеров SDRAM (Synchronous Dynamic Random Access Memory)

    • 144-pin SO-DIMM - используется для SDR SDRAM (Single Data Rate …) в портативних компьютерах

    • 168-pin DIMM - используется для SDR SDRAM (реже для FPM/EDO DRAM в рабочих станциях/серверах

    • 172-pin MicroDIMM - используется для DDR SDRAM (Double date rate)

    • 184-pin DIMM - используется для DDR SDRAM

    • 200-pin SO-DIMM - используется для DDR SDRAM и DDR2 SDRAM



    • 214-pin MicroDIMM - используется для DDR2 SDRAM

    • 204-pin SO-DIMM - используется для DDR3 SDRAM

    • 240-pin DIMM - используется для DDR2 SDRAM, DDR3 SDRAM и FB-DIMM (Fully Buffered) DRAM





    • 244-pin Mini-DIMM – для Mini Registered DIMM

    • 256-pin SO-DIMM - используется для DDR4 SDRAM

    • 284-pin DIMM - используется для DDR4 SDRAM

Чтобы нельзя было установить неподходящий тип DIMM-модуля, в текстолитовой плате модуля делается несколько прорезей (ключей) среди контактных площадок, а также справа и слева в зоне элементов фиксации модуля на системной плате. Для механической идентификации различных DIMM-модулей используется сдвиг положения двух ключей в текстолитовой плате модуля, расположенных среди контактных площадок. Основное назначение этих ключей - не дать установить в разъем DIMM-модуль с неподходящим напряжением питания микросхем памяти. Кроме того, расположение ключа или ключей определяет наличие или отсутствие буфера данных и т. д.

Модули DDR имеют маркировку PC. Но в отличие от SDRAM, где PC обозначало частоту работы (например PC133 – память предназначена для работы на частоте 133МГц), показатель PC в модулях DDR указывает на максимально достижимую пропускную способностью, измеряемую в мегабайтах в секунду.

DDR2 SDRAM

Название стандарта Тип памяти Частота памяти Частота шины Передача данных в секунду (MT/s)
PC2-3200 DDR2-400 100 МГц 200 МГц 400 3200 МБ/с
PC2-4200 DDR2-533 133 МГц 266 МГц 533 4200 МБ/с
PC2-5300 DDR2-667 166 МГц 333 МГц 667 5300 МБ/с
PC2-5400 DDR2-675 168 МГц 337 МГц 675 5400 МБ/с
PC2-5600 DDR2-700 175 МГц 350 МГц 700 5600 МБ/с
PC2-5700 DDR2-711 177 МГц 355 МГц 711 5700 МБ/с
PC2-6000 DDR2-750 187 МГц 375 МГц 750 6000 МБ/с
PC2-6400 DDR2-800 200 МГц 400 МГц 800 6400 МБ/с
PC2-7100 DDR2-888 222 МГц 444 МГц 888 7100 МБ/с
PC2-7200 DDR2-900 225 МГц 450 МГц 900 7200 МБ/с
PC2-8000 DDR2-1000 250 МГц 500 МГц 1000 8000 МБ/с
PC2-8500 DDR2-1066 266 МГц 533 МГц 1066 8500 МБ/с
PC2-9200 DDR2-1150 287 МГц 575 МГц 1150 9200 МБ/с
PC2-9600 DDR2-1200 300 МГц 600 МГц 1200 9600 МБ/с

DDR3 SDRAM

Название стандарта Тип памяти Частота памяти Частота шины Передач данных в секунду(MT/s) Пиковая скорость передачи данных
PC3-6400 DDR3-800 100 МГц 400 МГц 800 6400 МБ/с
PC3-8500 DDR3-1066 133 МГц 533 МГц 1066 8533 МБ/с
PC3-10600 DDR3-1333 166 МГц 667 МГц 1333 10667 МБ/с
PC3-12800 DDR3-1600 200 МГц 800 МГц 1600 12800 МБ/с
PC3-14400 DDR3-1800 225 МГц 900 МГц 1800 14400 МБ/с
PC3-16000 DDR3-2000 250 МГц 1000 МГц 2000 16000 МБ/с
PC3-17000 DDR3-2133 266 МГц 1066 МГц 2133 17066 МБ/с
PC3-19200 DDR3-2400 300 МГц 1200 МГц 2400 19200 МБ/с

В таблицах указываются именно пиковые величины, на практике они могут быть недостижимы.
Для комплексной оценки возможностей RAM используется термин пропускная способность памяти. Он учитывает и частоту, на которой передаются данные и разрядность шины и количество каналов памяти.

Пропускная способность = Частота шины x ширину канала x кол-во каналов

Для всех DDR — количество каналов = 2 и ширина равна 64 бита.
Например, при использовании памяти DDR2-800 с частотой шины 400 МГц пропускная способность будет:

(400 МГц x 64 бит x 2)/ 8 бит = 6400 Мбайт/с

Каждый производитель каждому своему продукту или детали дает его внутреннюю производственную маркировку, называемую P/N (part number) — номер детали.
Для модулей памяти у разных производителей она выглядит примерно так:

  • Kingston KVR800D2N6/1G
  • OCZ OCZ2M8001G
  • Corsair XMS2 CM2X1024-6400C5

На сайте многих производителей памяти можно изучить, как читается их Part Number.

Kingston Part Number Description
KVR1333D3D4R9SK2/16G 16GB 1333MHz DDR3 ECC Reg CL9 DIMM (Kit of 2) DR x4 w/TS

Оперативная память используется для временного хранения данных, необходимых для работы операционной системы и всех программ. Оперативной памяти должно быть достаточно, если ее не хватает, то компьютер начинает тормозить.

Плата с чипами памяти называется модулем памяти (или планкой). Память для ноутбука, кроме размера планок, ни чем не отличается от памяти для компьютера, поэтому при выборе руководствуйтесь теми же рекомендациями.

Для офисного компьютера достаточно одной планки DDR4 на 4 Гб с частотой 2400 или 2666 МГц (стоит почти одинаково).
Оперативная память Crucial CT4G4DFS824A

Для мультимедийного компьютера (фильмы, простые игры) лучше взять две планки DDR4 с частотой 2666 МГц по 4 Гб, тогда память будет работать в более быстром двухканальном режиме.
Оперативная память Ballistix BLS2C4G4D240FSB

Для игрового компьютера среднего класса можно взять одну планку DDR4 на 8 Гб с частотой 2666 МГц с тем, чтобы в будущем можно было добавить еще одну и лучше если это будет ходовая модель попроще.
Оперативная память Crucial CT8G4DFS824A

А для мощного игрового или профессионального ПК нужно сразу брать набор из 2 планок DDR4 по 8 Гб, при этом будет вполне достаточно частоты 2666 МГц.

2. Сколько нужно памяти

Для офисного компьютера, предназначенного для работы с документами и выхода в интернет, с головой достаточно одной планки памяти на 4 Гб.

Для мультимедийного компьютера, который можно будет использовать для просмотра видео в высоком качестве и нетребовательных игр, вполне хватит 8 Гб памяти.

Для игрового компьютера среднего класса вариантом минимум является 8 Гб оперативки.

Для мощного игрового или профессионального компьютера необходимо 16 Гб памяти.

Больший объем памяти может понадобиться только для очень требовательных профессиональных программ и обычным пользователям не нужен.

Объем памяти для старых ПК

Если вы решили увеличить объем памяти на старом компьютере, то учтите, что 32-разрядные версии Windows не поддерживают более 3 Гб оперативной памяти. То есть, если вы установите 4 Гб оперативной памяти, то операционная система будет видеть и использовать только 3 Гб.

Что касается 64-разрядных версий Windows, то они смогут использовать всю установленную память, но если у вас старый компьютер или есть старый принтер, то на них может не оказаться драйверов под эти операционные системы. В таком случае, перед покупкой памяти, установите 64-х разрядную версию Windows и проверьте все ли у вас работает. Так же рекомендую заглянуть на сайт производителя материнской платы и посмотреть какой объем модулей и общий объем памяти она поддерживает.

Учтите еще, что 64-разрядные операционные системы расходуют в 2 раза больше памяти, например Windows 7 х64 под свои нужды забирает около 800 Мб. Поэтому 2 Гб памяти для такой системы будет мало, желательно не менее 4 Гб.

Практика показывает, что современные операционные системы Windows 7,8,10 полностью раскрываются при объеме памяти 8 Гб. Система становится более отзывчивой, программы быстрее открываются, а в играх исчезают рывки (фризы).

3. Типы памяти

Современная память имеет тип DDR SDRAM и постоянно совершенствуется. Так память DDR и DDR2 уже является устаревшей и может использоваться только на старых компьютерах. Память DDR3 уже не целесообразно использовать на новых ПК, на смену ей пришла более быстрая и перспективная DDR4.

Учтите, что выбранный тип памяти должен поддерживать процессор и материнская плата.

Также новые процессоры, из соображений совместимости, могут поддерживать память DDR3L, которая отличается от обычной DDR3 пониженным напряжением с 1.5 до 1.35 В. Такие процессоры смогут работать и с обычной памятью DDR3, если у вас она уже есть, но производители процессоров это не рекомендуют из-за повышенной деградации контроллеров памяти, рассчитанных на DDR4 с еще более низким напряжением 1.2 В.

Тип памяти для старых ПК

Устаревшая память DDR2 стоит в несколько раз дороже более современной памяти. Планка DDR2 на 2 Гб стоит в 2 раза дороже, а планка DDR2 на 4 Гб в 4 раза дороже планки DDR3 или DDR4 аналогичного объема.

Поэтому, если вы хотите существенно увеличить память на старом компьютере, то возможно более оптимальным вариантом будет переход на более современную платформу с заменой материнской платы и если необходимо процессора, которые будут поддерживать память DDR4.

Подсчитайте во сколько вам это обойдется, возможно выгодным решением будет продать старую материнскую плату со старой памятью и приобрести новые, пусть не самые дорогие, но более современные комплектующие.

Разъемы материнской платы для установки памяти называются слотами.

Каждому типу памяти (DDR, DDR2, DDR3, DDR4) соответствует свой слот. Память DDR3 можно установить только в материнскую плату со слотами DDR3, DDR4 – со слотами DDR4. Материнские платы, поддерживающие старую память DDR2 уже не производят.

5. Характеристики памяти

Основными характеристиками памяти, от которых зависит ее быстродействие, являются частота и тайминги. Скорость работы памяти не оказывает такого сильного влияния на общую производительность компьютера как процессор. Тем не менее, часто можно приобрести более быструю память не на много дороже. Быстрая память нужна прежде всего для мощных профессиональных компьютеров.

5.1. Частота памяти

Частота оказывает наибольшее значение на скорость работы памяти. Но перед ее покупкой необходимо убедиться, что процессор и материнская плата так же поддерживают необходимую частоту. В противном случае реальная частота работы памяти будет ниже и вы просто переплатите за то, что не будет использоваться.

Недорогие материнские платы поддерживают более низкую максимальную частоту памяти, например для DDR4 это 2400 МГц. Материнские платы среднего и высокого класса могут поддерживать память с более высокой частотой (3400-3600 МГц).

А вот с процессорами дело обстоит иначе. Старые процессоры с поддержкой памяти DDR3 могут поддерживать память с максимальной частотой 1333, 1600 или 1866 МГц (в зависимости от модели). Для современных процессоров с поддержкой памяти DDR4 максимально поддерживаемая частота памяти может составлять 2400 МГц или выше.

Процессоры Intel 6-го поколения и выше, а также процессоры AMD Ryzen поддерживают память DDR4 с частотой 2400 МГц или выше. При этом в их модельном ряду есть не только мощные дорогие процессоры, но и процессоры среднего и бюджетного класса. Таким образом, вы можете собрать компьютер на самой современной платформе с недорогим процессором и памятью DDR4, а в будущем поменять процессор и получить высочайшую производительность.

Основной на сегодня является память DDR4 2400 МГц, которая поддерживается наиболее современными процессорами, материнскими платами и стоит столько же как DDR4 2133 МГц. Поэтому приобретать память DDR4 с частотой 2133 МГц сегодня не имеет смысла.

Какую частоту памяти поддерживает тот или иной процессор можно узнать на сайтах производителей:

По номеру модели или серийному номеру очень легко найти все характеристики любого процессора на сайте:

Или просто введите номер модели в поисковой системе Google или Яндекс (например, «Ryzen 7 1800X»).

5.2. Память с высокой частотой

Теперь я хочу затронуть еще один интересный момент. В продаже можно встретить оперативную память гораздо более высокой частоты, чем поддерживает любой современный процессор (3000-3600 МГц и выше). Соответственно, многие пользователи задаются вопросом как же такое может быть?

Все дело в технологии, разработанной компанией Intel, eXtreme Memory Profile (XMP). XMP позволяет памяти работать на более высокой частоте, чем официально поддерживает процессор. XMP должна поддерживать как сама память, так и материнская плата. Память с высокой частотой просто не может существовать без поддержки этой технологии, но далеко не все материнские платы могут похвастаться ее поддержкой. В основном это более дорогие модели выше среднего класса.

Суть технологии XMP заключается в том, что материнская плата автоматически увеличивает частоту шины памяти, благодаря чему память начинает работать на своей более высокой частоте.

У компании AMD существует подобная технология, называемая AMD Memory Profile (AMP), которая поддерживалась старыми материнскими платами для процессоров AMD. Эти материнские платы обычно поддерживали и модули XMP.

Приобретать более дорогую память с очень высокой частотой и материнскую плату с поддержкой XMP есть смысл для очень мощных профессиональных компьютеров, оснащенных топовым процессором. В компьютере среднего класса это будут выброшенные на ветер деньги, так как все упрется в производительность других комплектующих.

В играх частота памяти оказывает небольшое влияние и переплачивать особого смысла нет, достаточно будет взять на 2400 МГц, ну или на 2666 МГц если разница в цене будет небольшая.

Для профессиональных приложений можно взять память с частотой повыше – 2666 МГц или если хотите и позволяют средства на 3000 МГц. Разница в производительности тут больше чем в играх, но не кардинальная, так что загоняться с частотой памяти особого смысла нет.

Еще раз напоминаю, что ваша материнская плата должна поддерживать память требуемой частоты. Кроме того, иногда процессоры Intel начинают работать нестабильно при частоте памяти выше 3000 МГц, а у Ryzen этот предел составляет около 2900 МГц.

Таймингами называются задержки между операциями чтения/записи/копирования данных в оперативной памяти. Соответственно чем эти задержки меньше, тем лучше. Но тайминги оказывают гораздо меньшее влияние на скорость работы памяти, чем ее частота.

Основных таймингов, которые указываются в характеристиках модулей памяти всего 4.

Из них самой главной является первая цифра, которая называется латентность (CL).

Типичная латентность для памяти DDR3 1333 МГц – CL 9, для памяти DDR3 с более высокой частотой – CL 11.

Типичная латентность для памяти DDR4 2133 МГц – CL 15, для памяти DDR4 с более высокой частотой – CL 16.

Не стоит приобретать память с латентностью выше указанной, так как это говорит об общем низком уровне ее технических характеристик.

Обычно, память с более низкими таймингами стоит дороже, но если разница в цене не значительная, то предпочтение следуют отдать памяти с более низкой латентностью.

5.4. Напряжение питания

Память может иметь различное напряжение питания. Оно может быть как стандартным (общепринятым для определенного типа памяти), так и повышенным (для энтузиастов) или наоборот пониженным.

Это особенно важно если вы хотите добавить память на компьютер или ноутбук. В таком случае напряжение новых планок должно быть таким же, как и у имеющихся. В противном случае возможны проблемы, так как большинство материнских плат не могут выставлять разное напряжение для разных модулей.

Если напряжение выставится по планке с более низким вольтажом, то другим может не хватить питания и система будет работать не стабильно. Если напряжение выставится по планке с более высоким вольтажом, то память рассчитанная на меньшее напряжение может выйти из строя.

Если вы собираете новый компьютер, то это не так важно, но чтобы избежать возможных проблем совместимости с материнской платой и заменой или расширением памяти в будущем, лучше выбирать планки со стандартным напряжением питания.

Память, в зависимости от типа, имеет следующие стандартные напряжения питания:

  • DDR — 2.5 В
  • DDR2 — 1.8 В
  • DDR3 — 1.5 В
  • DDR3L — 1.35 В
  • DDR4 — 1.2 В

Я думаю, вы обратили внимание на то, что в списке есть память DDR3L. Это не новый тип памяти, а обычная DDR3, но с пониженным напряжением питания (Low). Именно такая память нужна для процессоров Intel 6-го поколения и выше, которые поддерживают как память DDR4, так и DDR3. Но лучше в таком случае все же собирать систему на новой памяти DDR4.

6. Маркировка модулей памяти

Модули памяти маркируются в зависимости от типа памяти и ее частоты. Маркировка модулей памяти типа DDR начинается с PC, затем идет цифра, обозначающая поколение и скорость в мегабайтах в секунду (Мб/с).

По такой маркировке неудобно ориентироваться, достаточно знать тип памяти (DDR, DDR2, DDR3, DDR4), ее частоту и латентность. Но иногда, например на сайтах объявлений, можно увидеть маркировку, переписанную с планки. Поэтому, чтобы вы могли сориентироваться в таком случае, я приведу маркировку в классическом виде, с указанием типа памяти, ее частоты и типичной латентности.

DDR – устаревшая

  • PC-2100 (DDR 266 МГц) — CL 2.5
  • PC-2700 (DDR 333 МГц) — CL 2.5
  • PC-3200 (DDR 400 МГц) — CL 2.5

DDR2 – устаревшая

  • PC2-4200 (DDR2 533 МГц) — CL 5
  • PC2-5300 (DDR2 667 МГц) — CL 5
  • PC2-6400 (DDR2 800 МГц) — CL 5
  • PC2-8500 (DDR2 1066 МГц) — CL 5

DDR3 – устаревающая

  • PC3-10600 (DDR3 1333 МГц) — CL 9
  • PC3-12800 (DDR3 1600 МГц) — CL 11
  • PC3-14400 (DDR3 1866 МГц) — CL 11
  • PC3-16000 (DDR3 2000 МГц) — CL 11
  • PC4-17000 (DDR4 2133 МГц) — CL 15
  • PC4-19200 (DDR4 2400 МГц) — CL 16
  • PC4-21300 (DDR4 2666 МГц) — CL 16
  • PC4-24000 (DDR4 3000 МГц) — CL 16
  • PC4-25600 (DDR4 3200 МГц) — CL 16

Память DDR3 и DDR4 может иметь и более высокую частоту, но работать с ней могут только топовые процессоры и более дорогие материнские платы.

7. Конструкция модулей памяти

Планки памяти могут быть односторонние, двухсторонние, с радиаторами или без.

7.1. Размещение чипов

Чипы на модулях памяти могут размещаться с одной стороны платы (односторонние) и с двух сторон (двухсторонние).

Это не имеет значения если вы приобретаете память для нового компьютера. Если же вы хотите добавить память на старый ПК, то желательно, чтобы расположение чипов на новой планке было такое же как и на старой. Это поможет избежать проблем совместимости и повысит вероятность работы памяти в двухканальном режиме, о чем мы еще поговорим в этой статье.

Сейчас в продаже можно встретить множество модулей памяти с алюминиевыми радиаторами различного цвета и формы.

Наличие радиаторов может быть оправдано на памяти DDR3 с высокой частотой (1866 МГц и более), так как она сильнее греется. При этом в корпусе должна быть хорошо организована вентиляция.

Современная оперативка DDR4 с частотой 2400, 2666 МГц практически не греется и радиаторы на ней будут носить чисто декоративный характер. Они могут даже мешать, так как через некоторое время забьются пылью, которую из них трудно вычистить. Кроме того, стоить такая память будет несколько дороже. Так что, если хотите, на этом можно сэкономить, например, взяв отличную память Crucial на 2400 МГц без радиаторов.

Память с частотой от 3000 МГц имеет еще и повышенное напряжение питания, но тоже греется не сильно и в любом случае на ней будут радиаторы.

8. Память для ноутбуков

Память для ноутбуков отличается от памяти для стационарных компьютеров только размером модуля памяти и маркируется SO-DIMM DDR. Так же как и для стационарных компьютеров память для ноутбуков имеет типы DDR, DDR2, DDR3, DDR3L, DDR4.

По частоте, таймингам и напряжению питания память для ноутбуков не отличается от памяти для компьютеров. Но ноутбуки оснащаются только 1 или 2 слотами для памяти и имеют более жесткие ограничения максимального объема. Обязательно уточняйте эти параметры перед выбором памяти для конкретной модели ноутбука.

9. Режимы работы памяти

Память может работать в одноканальном (Single Channel), двухканальном (Dual Channel), трехканальном (Triple Channel) или четырехканальном режиме (Quad Channel).

В одноканальном режиме запись данных происходит последовательно в каждый модуль. В многоканальных режимах запись данных происходит параллельно во все модули, что приводит к значительному увеличению быстродействия подсистемы памяти.

Одноканальным режимом работы памяти ограничены только безнадежно устаревшие материнские платы с памятью DDR и первые модели с DDR2.

Все современные материнские платы поддерживают двухканальный режим работы памяти, а трехканальный и четырехканальный режим поддерживают только некоторые единичные модели очень дорогих материнских плат.

Главным условием работы двухканального режима является наличие 2 или 4 планок памяти. Для трехканального режима необходимо 3 или 6 планок памяти, а для четырехканального 4 или 8 планок.

Желательно, чтобы все модули памяти были одинаковыми. В противном случае работа в двухканальном режиме не гарантируется.

Если вы хотите добавить память на старый компьютер и ваша материнская плата поддерживает двухканальный режим, постарайтесь подобрать максимально идентичную по всем параметрам планку. Лучше всего продать старую и купить 2 новых одинаковых планки.

В современных компьютерах контроллеры памяти были перенесены с материнской платы в процессор. Теперь не так важно, чтобы модули памяти были одинаковыми, так как процессор в большинстве случаев все равно сможет активировать двухканальный режим. Это значит, что если вы в будущем захотите добавить память на современный компьютер, то не обязательно будет искать точь в точь такой же модуль, достаточно выбрать наиболее похожий по характеристикам. Но все же я рекомендую, что бы модули памяти были одинаковыми. Это даст вам гарантию ее быстрой и стабильной работы.

С переносом контроллеров памяти в процессор появились еще 2 режима двухканальной работы памяти – Ganged (спаренный) и Unganged (неспаренный). В случае если модули памяти одинаковые, то процессор может работать с ними в режиме Ganged, как и раньше. В случае, если модули отличаются по характеристикам, то для устранения перекосов в работе с памятью процессор может активировать режим Unganged. В целом скорость работы памяти в этих режимах практически одинаковая и не имеет никакой разницы.

Единственным недостатком двухканального режима является то, что несколько модулей памяти стоят дороже, чем один такого же объема. Но если вы не очень сильно стеснены в средствах, то покупайте 2 планки, скорость работы памяти будет значительно выше.

Если вам нужно, скажем 16 Гб оперативки, но вы пока не можете себе этого позволить, то можно приобрести одну планку на 8 Гб, чтобы в будущем добавить еще одну такую же. Но все же лучше приобретать две одинаковых планки сразу, так как потом может не получиться найти такую же и вы столкнетесь с проблемой совместимости.

10. Производители модулей памяти

Одним из лучших соотношений цена/качество на сегодня обладает память безукоризненно зарекомендовавшего себя бренда Crucial, у которого есть модули от бюджетных до геймерских (Ballistix).

Наравне с ним соперничает пользующийся заслуженной популярностью бренд Corsair, память которого стоит несколько дороже.

Как недорогую, но качественную альтернативу, особенно рекомендую польский бренд Goodram, у которого есть планки с низкими таймингами за невысокую цену (линейка Play).

Для недорогого офисного компьютера достаточно будет простой и надежной памяти производства AMD или Transcend. Они прекрасно себя зарекомендовали и с ними практически не бывает проблем.

Вообще, лидерами в производстве памяти считаются корейские компании Hynix и Samsung. Но сейчас модули этих брендов массово производятся на дешевых китайских фабриках и среди них очень много подделок. Поэтому я не рекомендую приобретать память этих брендов.

Исключением могут быть модули памяти Hynix Original и Samsung Original, которые производятся в Корее. Эти планки обычно синего цвета, их качество считается лучше чем в сделанных в Китае и гарантия на них бывает несколько выше. Но по скоростным характеристикам они уступают памяти с более низкими таймингами других качественных брендов.

Ну а для энтузиастов и любителей модинга есть доступные оверклокерские бренды GeIL, G.Skill, Team. Их память отличается низкими таймингами, высоким разгонным потенциалом, необычным внешним видом и стоит немного дешевле раскрученного бренда Corsair.

В продаже также есть большой ассортимент модулей памяти от очень популярного производителя Kingston. Память, продающаяся под бюджетным брендом Kingston, никогда не отличалась высоким качеством. Но у них есть топовая серия HyperX, пользующаяся заслуженной популярностью, которую можно рекомендовать к приобретению, однако цена на нее часто завышена.

11. Упаковка памяти

Лучше приобретать память в индивидуальной упаковке.

Обычно она более высокого качества и вероятность повреждения при транспортировке значительно ниже, чем у памяти, которая поставляется без упаковки.

12. Увеличение памяти

Если вы планируете добавить память на имеющийся компьютер или ноутбук, то сначала узнайте какой максимальный объем планок и общий объем памяти поддерживает ваша материнская плата или ноутбук.

Также уточните сколько слотов для памяти на материнской плате или в ноутбуке, сколько из них занято и какие планки в них установлены. Лучше сделать это визуально. Откройте корпус, выньте планки памяти, рассмотрите их и перепишите все характеристики (или сделайте фото).

Если по какой-то причине вы не хотите лезть в корпус, то посмотреть параметры памяти можно в программе на вкладке SPD. Таким образом вы не узнаете односторонняя планка или двухсторонняя, но можете узнать характеристики памяти, если на планке нет наклейки.

Есть базовая и эффективная частота памяти. Программа CPU-Z и многие подобные показывают базовую частоту, ее нужно умножать на 2.

После того, как вы узнаете до какого объема можете увеличить память, сколько свободных слотов и какая память у вас установлена, можно будет приступать к изучению возможностей по увеличению памяти.

Если все слоты для памяти заняты, то единственной возможностью увеличения памяти остается замена существующих планок на новые большего объема. А старые планки можно будет продать на сайте объявлений или сдать на обмен в компьютерный магазин при покупке новых.

Если свободные слоты есть, то можно добавить к уже существующим планкам памяти новые. При этом желательно, чтобы новые планки были максимально близки по характеристикам уже установленным. В этом случае можно избежать различных проблем совместимости и повысить шансы того, что память будет работать в двухканальном режиме. Для этого должны быть соблюдены следующие условия, в порядке важности.

  1. Тип памяти должен совпадать (DDR, DDR2, DDR3, DDR3L, DDR4).
  2. Напряжение питания всех планок должно быть одинаковым.
  3. Все планки должны быть односторонние или двухсторонние.
  4. Частота всех планок должна совпадать.
  5. Все планки должны быть одинакового объема (для двухканального режима).
  6. Количество планок должно быть четным: 2, 4 (для двухканального режима).
  7. Желательно, чтобы совпадала латентность (CL).
  8. Желательно, чтобы планки были того же производителя.

Проще всего начать выбор с производителя. Выбирайте в каталоге интернет-магазина планки того же производителя, объема и частоты, как установлены у вас. Убедитесь, что совпадает напряжение питания и уточните у консультанта односторонние они или двухсторонние. Если будет еще совпадать и латентность, то вообще хорошо.

Если вам не удалось найти похожие по характеристикам планки того же производителя, то выбирайте всех остальных из перечня рекомендуемых. Затем опять ищите планки нужного объема и частоты, сверяете напряжение питания и уточняете односторонние они или двухсторонние. Если вам не удалось найти похожие планки, то поищите в другом магазине, каталоге или на сайте объявлений.

Всегда лучший вариант это продать всю старую память и купить 2 новых одинаковых планки. Если материнская плата не поддерживает планки нужного объема, возможно придется купить 4 одинаковых планки.

13. Настройка фильтров в интернет-магазине

  1. Зайдите в раздел «Оперативная память» на сайте продавца.
  2. Выберите рекомендуемых производителей.
  3. Выберите формфактор (DIMM — ПК, SO-DIMM — ноутбук).
  4. Выберете тип памяти (DDR3, DDR3L, DDR4).
  5. Выберите необходимый объем планок (2, 4, 8 Гб).
  6. Выберите максимально поддерживаемую процессором частоту (1600, 1866, 2133, 2400 МГц).
  7. Если ваша материнская плата поддерживает XMP, добавьте к выборке память с более высокой частотой (2666, 3000 МГц).
  8. Отсортируйте выборку по цене.
  9. Последовательно просматривайте все позиции, начиная с более дешевых.
  10. Выберите несколько планок подходящих по частоте.
  11. Если разница в цене для вас приемлема, берите планки с большей частотой и меньшей латентностью (CL).

Таким образом, вы получите оптимальную по соотношению цена/качество/скорость память за минимально возможную стоимость.

14. Ссылки

Оперативная память Corsair CMK16GX4M2A2400C16
Оперативная память Corsair CMK8GX4M2A2400C16
Оперативная память Crucial CT2K4G4DFS824A

Как выбрать оперативную память (ОЗУ, DDR), какой модуль памяти лучше

При выборе оперативной памяти (ОЗУ, DDR) для модернизации компьютера, или сборке нового, большинство пользователей практически не уделяют внимания качеству и типу модулей оперативной памяти. “Единственным параметром” оперативной памяти часто становится только её объём, но это далеко не единственный параметр, на который нужно обращать внимание при выборе. И так, рассмотрим основные параметры ОЗУ , и что от них зависит.

Форм-фактор

Для настольного компьютера, форм-фактор (стандарты и физические размеры) будет DIMM , а для ноутбука SODIMM .

Ну, а теперь приступим к характеристикам…

Объём ОЗУ и количество модулей памяти

Как говорилось ранее, является первым критерием для выбора. При выборе объёма модулей оперативной памяти, и их количества, нужно в первую очередь, чётко представлять, в каких целях будет использоваться компьютер.

Если это компьютер для офисных задач или сёрфинга в интернете, то ему не нужен большой объём оперативной памяти, и на сегодняшний день, для такого компьютера, будет достаточно 2Гб одним модулем.

Если компьютер для вас это игровая станция, или рабочая станция с приложениями, потребляющими большой объём ОЗУ, то целесообразно будет приобрести 4 - 8 Гб

Количество модулей оперативной памяти существенно влияет на производительность ПК. Вот, к примеру, один и тот же компьютер с одним и тем же объёмом ОЗУ, но с большим количеством модулей памяти (например, у первого 4Гб одной планкой, а у второго 2 планки по 2Гб) быстрее загрузит игру чем первый. “Почему так?” - спросите вы, а потому что у современных материнских плат, ровно как и у контроллеров памяти в процессорах есть поддержка двух или трёх канального режима работы с памятью . Установив 2 или 3 планки ОЗУ в соответствующие слоты материнской платы (для активации этого режима, планки нужно вставлять в слоты одного цвета), вы активируете двух или трёх канальный режим, который в теории может увеличить общую пропускную способность памяти в 2 или 3 раза соответственно (на практике на много меньше, но разница существенна). К примеру, если один модуль памяти имеет ширину шины 64 бита - это значит, что процессор сможет прочитать из памяти 64 бита за один такт, а количество тактов соответствует частоте работы ОЗУ. А когда вы устанавливаете двух или трёх канальный режим, вы, тем самым увеличиваете ширину шины в 2 (128 бит) или 3 (192 бита) раза.

Но и тут есть свои подводные камни, не стоит сразу бежать покупать несколько модулей ОЗУ, если этот выигрыш в производительности для вас большой роли не сыграет. Устанавливая двух или трёх канальный режим, вы возможно уменьшаете стабильность работы компьютера, так как вероятность возникновения ошибок в таких режимах гораздо выше чем в одноканальном режиме. Это зависит от многих факторов: частота работы, производитель, тайминги, одинаковые ли модули памяти которые должны работать сообща, и т.д. Более того, из моего опыта по ремонту компьютеров, известно много случаев, когда после 3 - 4 лет бесперебойной работы в двухканальном режиме, материнская плата (чипсет) постепенно (а бывает резко) перестаёт корректно работать в таком режиме, или не стартовать вообще (последний вариант более частый) сообщая об отсутствии модулей памяти. Но стоит только вытащит все модули кроме одного, как система волшебным образом начинала работать. Решить данную проблему можно было, установив два модуля на один канал (разных цветов), а остальные модули (если такие были) “выкинуть”. А можно было, и прогреть чипсет/процессор (в зависимости от того, где контроллер памяти) - это может помочь на небольшой промежуток времени. Причина, по которой происходит отказ контроллера памяти, как и ухудшение качества самих модулей - деградация чипов.

Память нужно покупать исходя из рекомендаций производителя материнской платы вашего компьютера. Для этого достаточно зайти на сайт производителя, найти там свою плату, и найти раздел с поддерживаемыми модулями и производителями памяти. Материнская плата, может конечно чудесно работать и с другими модулями памяти, но всё же, покупая память из списка поддерживаемых, вы гарантируете себе стабильную работу.

Тип памяти и частота работы памяти

Тип оперативной памяти указывает в первую очередь на техпроцесс , по которому выполнены чипы, и указывает на то, что более новый модуль работает на большей частоте, что положительно сказывается на производительности.

На данный момент, есть 2 типа памяти - DDR2 и DDR3, для покупки нового компьютера, я думаю выбор очевиден - брать только новое, а это DDR3 (на момент написания статьи). Для модернизации компьютера, выбора у вас особо и нет, придется брать память, которую поддерживает ваша материнская плата. Только в некоторых случаях, при модернизации компьютера можно поменять память на более новую. Но это возможно только если у вас материнская плата - “комбо”, которая поддерживает и более старый и более новый тип памяти, но совместно, модули разных типов работать не будут, и если у вас установлена более старая память, то её придётся “выкинуть” и поставить в другие слоты более новую.

Частота оперативной памяти может быть разной, планки даже одного типа могут быть разных частот. В идеале, желательно выбирать память с частотой идентичной FSB шине процессора. И не стоит путать эффективную частоту работы ОЗУ и эффективную. Вот, к примеру, память DDR 1333 является памятью класса DDR2 и работает на РЕАЛЬНОЙ частоте в 667МГц. FSB шина процессора так же описывается как эффективная, и её нужно делить на 2 для определения реальной.

Задержки памяти (тайминги)

Тайминги памяти или латентность памяти - это временные задержки сигнала. Задержки памяти, в некотором роде влияют на производительность (пропускную способность и скорость доступа) модуля ОЗУ в целом. Чем меньше задержки памяти, тем быстрее она может работать. Тайминги памяти как правило записывают в виде 2-2-2-6, каждая часть записи соответствует задержке сигнала каждого из основных параметров. Не будем щас вдаваться в подробности работы каждого из процессов, вы просто должны знать, что, чем меньше тайминги памяти, тем она производительней (до 10%).

Для современных модулей памяти, её тайминги не являются основным критерием, так как процессоры работающие с памятью DDR3 имеют относительно большой оббьем кеш памяти второго и третьего уровня, что позволяет существенно сократить количество обращений к памяти и в свою очередь уменьшает значение задержек памяти. Но несмотря на это, тайминги всё же имеют значение, и нельзя игнорировать их при выборе модуля памяти.

Производитель модуля ОЗУ

Стабильность, качество, и в какой-то степени производительность оперативной памяти напрямую зависят от производителя. Не все производители ОЗУ делают качественные модули памяти, и как правило, качественный модуль памяти стоит немного дороже чем остальные. Приведу несколько известных и хороших производителей памяти на данный момент: Transcend , Samsung , Kingston , OCZ . Это не единственные производители которые делают хорошую память, но покупая память этих производителей вы не рискуете купить кота в мешке.

Разгон

У большинства известных производителей есть разогнанные модели оперативной памяти. Это, несомненно, даёт прирост производительности, но не стоит существенно переплачивать за это, так как разогнать оперативную память можно и самому. Да и к тому же, это быстрее приведёт её к смерти из-за деградации чипов . Но если вы всё - же решили выбрать разогнанный модуль, то обратите внимание, что у данных модулей памяти должно быть охлаждение.

Охлаждение

Если вы планируете разгонять свой компьютер, и ОЗУ в том числе, то желательно выбрать модуль памяти, имеющий охлаждение в виде алюминиевых пластин.

Не забываем оставлять

Модули оперативного запоминающего устройства (ОЗУ) нужны компьютеру так же, как и процессор. Без ОЗУ процессор не сможет работать. В оперативную память он записывает и считывает из нее данные, необходимые ему для произведения тех или иных операций. Когда нужен быстрый доступ к данным, работать напрямую с жестким диском процессор не может в первую очередь из-за слишком низкой скорости его работы.

Чем быстрее оперативная память, тем лучше. Скорость памяти определяется частотой ее шины, которая зависит от типа памяти. Сегодня в ходу можно встретить оперативную память следующих типов (размещены по хронологии появления):

SDR SDRAM (тактовая частота шины 66 - 133 МГц);

DDR SDRAM(100 – 267 МГц);

DDR2 SDRAM (400 – 1066 МГц);

DDR3 SDRAM (800 – 2400 МГц).

Принцип работы памяти указанных типов одинаков. Они обрабатывают поток команд процессора как своеобразный конвейер. Главной особенностью этого конвейера является то, что при поступлении в запоминающее устройство команды чтения, данные на выходе появляются не сразу, а спустя какое-то время (через некоторое количество тактов шины). Это время называется задержкой или таймингами памяти (англ. - SDRAM latency) и чем оно короче, тем память продуктивнее. Этот параметр, как и частоту шины, также нужно учитывать при выборе ОЗУ.

Например, есть два модуля ОЗУ одного типа с частотой шины 800 МГц и задержками памяти 4-4-4 и 5-5-5. Из них продуктивнее будет первый вариант.

Сложнее сравнить память с разными частотами. Как правило, в модулях памяти с более высокой частотой выше оказываются и задержки, и выигрыш в скорости от этой частоты на самом деле будет не настолько большим, как кажется на первый взгляд. Например, DDR3-1333МГц с таймингами 9-9-9 лишь немного опережает DDR2-800МГц с задержками 4-4-4, а DDR3-1333МГц с задержками 7-7-7 по производительности где-то равна DDR2-1067МГц.

Но будущее все же за более новыми типами оперативной памяти. Уже разработана DDR4 SDRAM (2133 – 4266 МГц), использование которой, по прогнозам экспертов, к 2015 году станет массовым явлением.

Разные типы модулей ОЗУ существенно отличаются также и внешне (разъемом, количеством контактов и т.д.). Если материнская плата рассчитана на использование одного типа памяти, установить на нее другой тип ОЗУ нельзя, поскольку даже физически в слот он не войдет. Существуют переходники, позволяющие устанавливать модули DDR2 в слоты DDR, но широкого распространения они не получили, поскольку использовать их можно только на материнских платах, системная логика которых поддерживает работу одновременно с DDR и DDR2.

Кроме скорости работы, важной характеристикой оперативной памяти является также ее объем, который должен соответствовать кругу задач, решаемому с помощью компьютера, а также установленному на нем программному обеспечению. Например, офисному компьютеру с системой Windows XP для работы с текстом, просмотра страниц Интернета и осуществления других несложных операций вполне достаточно даже 512 MB оперативной памяти. Если на том же компьютере будет установлена операционная система Windows7, для решения тех же задач нужно будет уже как минимум 2048 MB ОЗУ, поскольку сама Windows7 требует больше памяти. Если в системе будет недостаточно ОЗУ, то при запуске ресурсоемких программ свободная память может закончиться. В этом случае компьютер для ее расширения будет использовать часть жесткого диска (так называемый файл подкачки или swap-файл, специально зарезервированный операционной системой). Учитывая, что скорость доступа к данным на жестком диске в сотни раз ниже скорости доступа к оперативной памяти, быстродействие компьютера в таких случаях сильно падает, на системном блоке постоянно горит индикатор занятости жесткого диска и слышен характерный треск его напряженной работы.


Во время приобретения модулей ОЗУ важно учитывать еще два момента:

1. Если на компьютере будет использоваться 32-битная операционная система (которая на момент подготовки этого материала предпочиталась большинством пользователей), ставить на эту машину больше 4 ГБ оперативной памяти особого смысла нет, поскольку система будет «видеть» только 3 ГБ ОЗУ и еще 25% от того, что осталось (т.е., если поставить 4 ГБ, будет использоваться только 3,25 ГБ). Для использования ОЗУ большего объема необходима 64-битная операционная система;