Защита информации - реферат. Защита информации, антивирусная защита Криптографическая защита информации

Защита информации должна быть основана на системном подходе. Системный подход заключается в том, что все средства, используемые для обеспечения информационной безопасности должны рассматриваться как единый комплекс взаимосвязанных мер. Одним из принципов защиты информации является принцип «разумной достаточности», который заключается в следующем: стопроцентной защиты не существует ни при каких обстоятельствах, поэтому стремиться стоит не к теоретически максимально достижимому уровню защиты информации, а к минимально необходимому в данных конкретных условиях и при данном уровне возможной угрозы.

Защиту информации можно условно разделить на защиту:

    от потери и разрушения;

    от несанкционированного доступа.

2. Защита информации от потери и разрушения

Потеря информации может произойти по следующим причинам:

    нарушение работы компьютера;

    отключение или сбои питания;

    повреждение носителей информации;

    ошибочные действия пользователей;

    действие компьютерных вирусов;

    несанкционированные умышленные действия других лиц.

Предотвратить указанные причины можно резервированием данных , т.е. созданием их резервных копий. К средствам резервирования относятся:

    программные средства для создания резервных копий, входящие в состав большинства операционных систем. Например, MS Backup, Norton Backup;

    создание архивов на внешних носителях информации.

В случае потери информация может быть восстановлена. Но это возможно только в том случае, если:

    после удаления файла на освободившееся место не была записана новая информация;

    если файл не был фрагментирован, т.е. (поэтому надо регулярно выполнять операцию дефрагментации с помощью, например, служебной программы «Дефрагментация диска», входящей в состав операционной системы Windows).

Восстановление производится следующими программными средствами:

    Undelete из пакета служебных программ DOS;

    Unerase из комплекта служебных программ Norton Utilites.

Если данные представляют особую ценность для пользователя, то можно применять защиту от уничтожения :

    присвоить файлам свойство Read Only (только для чтения);

    использовать специальные программные средства для сохранения файлов после удаления, имитирующие удаление. Например, Norton Protected Recycle Bin (защищенная корзина). .

Большую угрозу для сохранности данных представляют нарушения в системе подачи электропитания - отключение напряжения, всплески и падения напряжения и т.п. Практически полностью избежать потерь информации в таких случаях можно, применяя источники бесперебойного питания. Они обеспечивают нормальное функционирование компьютера даже при отключении напряжения за счет перехода на питание от аккумуляторных батарей.

  1. Защита информации от несанкционированного доступа

Несанкционированный доступ - это чтение, изменение или разрушение информации при отсутствии на это соответствующих полномочий.

Основные типовые пути несанкционированного получения информации:

    хищение носителей информации;

    копирование носителей информации с преодолением мер защиты;

    маскировка под зарегистрированного пользователя;

    мистификация (маскировка под запросы системы);

    использование недостатков операционных систем и языков программирования;

    перехват электронных излучений;

    перехват акустических излучений;

    дистанционное фотографирование;

    применение подслушивающих устройств;

    злоумышленный вывод из строя механизмов защиты.

Для защиты информации от несанкционированного доступа применяются:

    Организационные мероприятия.

    Технические средства.

    Программные средства.

    Криптография.

1. Организационные мероприятия включают в себя:

    пропускной режим;

    хранение носителей и устройств в сейфе (дискеты, монитор, клавиатура);

    ограничение доступа лиц в компьютерные помещения.

2. Технические средства включают в себя различные аппаратные способы защиты информации:

    фильтры, экраны на аппаратуру;

    ключ для блокировки клавиатуры;

    устройства аутентификации - для чтения отпечатков пальцев, формы руки, радужной оболочки глаза, скорости и приемов печати и т.п.

3. Программные средства защиты информации заключаются в разработке специального программного обеспечения, которое бы не позволяло постороннему человеку получать информацию из системы. Программные средства включают в себя:

    парольный доступ;

    блокировка экрана и клавиатуры с помощью комбинации клавиш;

    использование средств парольной защиты BIOS (basic input-output system - базовая система ввода-вывода).

4. Под криптографическим способом защиты информации подразумевается ее шифрование при вводе в компьютерную систему. Суть данной защиты заключается в том, что к документу применяется некий метод шифрования (ключ), после чего документ становится недоступен для чтения обычными средствами. Чтение документа возможно при наличии ключа или при применении адекватного метода чтения. Если в процессе обмена информацией для шифрования и чтения используется один ключ, то криптографический процесс является симметричным. Недостаток – передача ключа вместе с документом. Поэтому в INTERNET используют несимметричные криптографические системы, где используется не один, а два ключа. Для работы применяют 2 ключа: один – открытый (публичный – public), а другой - закрытый (личный - private). Ключи построены так, что сообщение, зашифрованное одной половинкой, можно расшифровать только другой половинкой. Создав пару ключей, компания широко распространяет публичный ключ, а закрытый ключ сохраняет надежно.

Оба ключа представляют собой некую кодовую последовательность. Публичный ключ публикуется на сервере компании. Любой желающий может закодировать с помощью публичного ключа любое сообщение, а прочесть после кодирования может только владелец закрытого ключа.

Принцип достаточности защиты . Многие пользователи, получая чужой публичный ключ, желают получить и использовать их, изучая, алгоритм работы механизма шифрования и пытаются установить метод расшифровки сообщения, чтобы реконструировать закрытый ключ. Принцип достаточности заключается в проверке количества комбинаций закрытого ключа.

Понятие об электронной подписи . С помощью электронной подписи клиент может общаться с банком, отдавая распоряжения о перечислении своих средств на счета других лиц или организаций. Если необходимо создать электронную подпись, следует с помощью специальной программы (полученной от банка) создать те же 2 ключа: закрытый (остается у клиента) и публичный (передается банку).

Защита от чтения осуществляется:

    на уровне DOS введением для файла атрибутов Hidden (скрытый);

    шифрованием.

Защита то записи осуществляется:

    установкой для файлов свойства Read Only (только для чтения);

    запрещением записи на дискету путем передвижения или выламывания рычажка;

    запрещением записи через установку BIOS - «дисковод не установлен»

При защите информации часто возникает проблема надежного уничтожения данных, которая обусловлена следующими причинами:

    при удалении информация не стирается полностью;

    даже после форматирования дискеты или диска данные можно восстановить с помощью специальных средств по остаточному магнитному полю.

Для надежного удаления используют специальные служебные программы, которые стирают данные путем многократной записи на место удаляемых данных случайной последовательности нулей и единиц.

Минестерство образования и науки РФ

Федеральное агенство по образованию

ГОУ ВПО «Магнитогорский Государственный Технический Университет им. Носова»

Кафедра Информатики и Информационных технологий

Реферат на тему: «Методы защиты информации»

Подготовил: студент группы ТН-10

Рязанов Алексей

Проверил: преподаватель кафедры ИиИТ

Магнитогорск, 2010

Введение 3

Основные понятия информационной безопасности 3

Анализ угроз информационной безопасности 4

Способы и средства нарушения конфиденциальности информации 5

Основные методы реализации угроз информационной безопасности 5

Основы противодействия нарушению конфиденциальности информации 5

Методы разграничения доступа 6

Идентификация и аутентификация пользователей 6

Методы мониторинга несанкционированных действий 6

Криптографические методы защиты данных 7

Основные принципы криптографии 7

Шифрование заменой (подстановка) 9

Шифрование методом перестановки 9

Методы шифрования, использующие ключи 9

Электронная цифровая подпись 9

Заключение 10

Литература 11

Введение

Персональные компьютеры, системы управления и сети на их основе быстро входят во все области человеческой деятельности. Согласно статистическим данным, более 80% информации компаний несут финансовые убытки из-за нарушения целостности и конфиденциальности используемых данных.

Кроме информации, составляющей государственную или коммерческую тайну, существует информация, представляющая собой интеллектуальную собственность. Стоимость такой информации в мире составляет несколько триллионов долларов в год. Ее несанкционированное копирование, также снижает доходы компаний и авторов, занятых ее разработкой.

Усложнение методов и средств организации машинной обработки, повсеместное использование глобальной сети Интернет приводит к тому, что информация становится все более уязвимой. Этому способствуют такие факторы, как постоянно возрастающие объемы обрабатываемых данных, накопление и хранение данных в ограниченных местах, постоянное расширение круга пользователей, имеющих доступ к ресурсам, программам и данным, недостаточный уровень защиты аппаратных и программных средств компьютеров и коммуникационных систем и т.п.

Учитывая эти факты, защита информации в процессе ее сбора, хранения, обработки и передачи приобретает исключительно важное значение.

Основные понятия информационной безопасности

Компьютерная система (КС) – организационно-техническая система, представляющую совокупность следующих взаимосвязанных компонентов:

      технические средства обработки и передачи данных;

      методы и алгоритмы обработки в виде соответствующего ПО;

      данные – информация на различных носителях и находящаяся в процессе обработки;

      конечные пользователи – персонал и пользователи, использующие КС с целью удовлетворения информационных потребностей;

      объект – любой элемент КС, доступ к которому может быть произвольно ограничен;

      субъект – любая сущность, способная инициировать выполнение операций над объектом.

Система защиты информации – это совокупность мер, программно-технических средств, правовых и морально-этических норм, направленных на противодействие

угрозам нарушителей с целью сведения до минимума возможного ущерба пользователям и владельцам системы.

Идентификация – получение от субъекта доступа к сведениям (имя, учетный номер и т.д.), позволяющим выделить его из множества субъектов.

Аутентификация – получение от субъекта сведений (пароль, биометрические данные и т.д.), подтверждающих, что идентифицируемый субъект является тем, за кого себя выдает.

Несанкционированный доступ (НСД) – доступ с нарушением правил разграничения доступа субъекта к информации, с использованием штатных средств (программного или аппаратного обеспечения), предоставляемых КС.

Пароль – комбинация символов, известная только ее владельцу.

Стойкость – это минимальный объем зашифрованного текста, который можно вскрыть статистическим анализом.

Анализ угроз информационной безопасности

Для успешного противодействия угрозам и атакам КС, а также выбора способов и средств защиты, политики безопасности и анализа рисков, необходимо классифицировать существующие угрозы информационной безопасности.

Классификация угроз может быть проведена по ряду базовых признаков:

      по природе возникновения;

      по степени преднамеренности;

      по степени зависимости от активности КС

      по степени воздействия на КС;

      по способу доступа к ресурсам КС;

      по текущему месту расположения информации в КС.

Необходимо отметить, что абсолютно надежных систем защиты не существует. Уровень системы защиты – это компромисс между понесенными убытками от потери конфиденциальности информации, с одной стороны, и убытками от усложнения КС и увеличения доступа к ресурсам от введения систем защиты, с другой стороны.

Способы и средства нарушения конфиденциальности информации

Основные методы реализации угроз информационной безопасности

К основным направлениям реализации злоумышленником информационных угроз на локальной, изолированной или включенной в сеть КС можно отнести следующие:

      непосредственное обращение к объектам доступа (злоумышленник пытается получить доступ к объектам);

      создание программных и технических средств, выполняющих обращение к объектам доступа;

      модификация средств защиты, позволяющая реализовать угрозы информационной безопасности;

      внедрение в технические средства программных или технических механизмов, нарушающих структуру и функции КС.

Получение доступа к информации обычно осуществляется злоумышленником в несколько этапов. На первом этапе происходит получение доступа к программным средствам, а на втором этапе – решаются задачи внедрения программных средств с целью хищения программ и данных.

Основы противодействия нарушению конфиденциальности информации

Требования безопасности определяют набор средств защиты КС на всех этапах ее существования: от разработки спецификации на проектирование программных средств до их списания. НСД может быть предотвращен или существенно затруднен при организации следующего комплекса мероприятий:

      идентификация и аутентификация пользователей;

      мониторинг несанкционированных действий – аудит;

      разграничение доступа к КС;

      криптографические методы сокрытия информации;

      защита КС при работе в сети.

Организация надежной защиты КС невозможна, с помощью только аппаратно-программных средств. Очень важным является административный контроль работы КС.

Основные задачи администратора по поддержанию средств защиты заключаются в следующем:

      постоянный контроль корректности функционирования КС и ее защиты;

      регулярный просмотр журналов регистрации событий;

      организация и поддержание адекватной политики безопасности;

      инструктирование пользователей ОС об изменениях в системе защиты, правильного выбора паролей и т.д;

      регулярное создание и обновление резервных копий программ и данных;

      постоянный контроль изменений конфигурационных данных.

Рассмотрим подробнее наиболее часто используемые методы защиты и принципы их действия.

Методы разграничения доступа

При организации доступа субъектов к объектам выполняются следующие действия:

      идентификация и аутентификация субъекта доступа;

      проверка прав доступа субъекта к объекту;

      ведение журнала учета действий субъекта.

Идентификация и аутентификация пользователей

При входе в КС и при получении доступа к данным, субъект должен быть идентифицирован и аутентифицирован. Эти две операции обычно выполняются вместе, т.е пользователь сначала сообщает системе сведения, позволяющие выделить его из множества субъектов, а затем сообщает секретные сведения, подтверждающие, что он то, за кого себя выдает. Для аутентификации субъекта чаще всего используют:

    • съемные носители информации;

      злектронные жетоны;

      пластиковые карты;

      механические ключи.

Методы мониторинга несанкционированных действий

Политика безопасности предполагает контроль за работой КС и ее компонентов, который заключается в фиксировании и последующем анализе событий в специальных журналах – журналах аудита. Периодически журнал рассматривается администратором ОС, или аудитором, которые анализируют сведения, накопленные в нем.

Для обеспечения надежной защиты ОС 1 в журнале должны отражаться следующие события:

      попытки входа/выхода пользователей из системы;

      попытки изменения списка пользователей;

      попытки изменения политики безопасности, в том числе и политики аудита.

Криптографические методы защиты данных

Основные принципы криптографии

Криптографические методы являются наиболее эффективными методами защиты информации в КС 2 . При передаче же по протяженным линиям связи, они являются единственным надежным способом защиты от несанкционированного доступа к ней.

Важнейшим показателем надежности криптографического закрытия информации является его стойкость.

На рис. 1 показана схема основных методов криптографического закрытия информации. Некоторые из этих методов рассмотрены ниже.

Также, на рис. 2 показан процесс шифрования криптографическим методом.

Рис. 2. Процесс шифрования криптографическим методом.

Рис. 1. Классификация основных методов криптографического закрытия

Шифрование заменой (подстановка)

Наиболее простой метод шифрования. При шифровании заменой (подстановкой) символы шифруемого текста заменяются символами того же или другого алфавита с заранее установленным правилом замены. В шифре простой замены каждый символ исходного текста заменяется символами того же алфавита одинаково на всем протяжении текста. Часто шифры простой замены называют шифрами одноалфавитной подстановки.

Такой шифр имеет низкую стойкость, поэтому этот метод используют крайне редко.

Шифрование методом перестановки

Этот метод заключается в том, что символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока символов.

Например, необходимо зашифровать текст «Абсолютно надежной защиты нет».

Выберем блок, размером 4 x 8.

Блок имеет вид:

Зашифрованный текст выглядит так: «сн нннтоазеюёщ Аооытжи лдатб й».

Методы шифрования, использующие ключи

Эти методы предполагают знание ключа при шифровании и дешифрования. При этом, важной задачей является безопасная передача ключа, который при этом обычно тоже шифруется. Учитывая короткую длину фразы, содержащей ключ, стойкость шифра ключа значительно выше, чем у основного текста.

Наиболее перспективными системами криптографической защиты данных в настоящее время являются системы с открытым ключом. В таких системах для шифрования данных используется один ключ, а для дешифрования – другой. Сегодня, наиболее развитым методом с открытым ключом является алгоритм RSA.

Электронная цифровая подпись

При обмене электронными документами очень важным является установление авторства, подлинности и целостности информации в полученном документе. Решение этих задач возлагается на цифровую подпись, сопровождающую электронный документ.

Функционально, она аналогична обычной рукописной подписи и обладает ее основными достоинствами:

      удостоверяет, что подписанный текст исходит от лица, поставившего подпись;

      не дает лицу, подписавшему текст отказаться от обязательств, связанных с подписанным текстом;

      гарантирует целостность подписанного текста.

Заключение

Итак, в этой работе был сделан обзор наиболее распространенных в настоящее время методов защиты информации и способов ее реализации. Выбор для конкретных систем должен быть основан на глубоком анализе слабых и сильных сторон тех или иных методов защиты. Обоснованный выбор той или иной системы защиты должен опираться на какие-либо критерии эффективности. К сожалению, до сих пор не разработаны подходящие методики оценки эффективности защитных систем.

Наиболее простой критерий такой эффективности - вероятность раскрытия ключа или мощность множества ключей. Для ее численной оценки можно использовать также и сложность раскрытия шифра путем перебора всех ключей. Однако, этот критерий не учитывает других важных требований к системам защиты:

      невозможность раскрытия или осмысленной модификации информации на основе анализа ее структуры,

      совершенство используемых протоколов защиты,

      минимальный объем используемой ключевой информации,

      минимальная сложность реализации (в количестве машинных операций), ее стоимость,

      высокая оперативность.

Поэтому желательно, конечно, использование некоторых интегральных показателей , учитывающих указанные факторы. Но в любом случае выбранный комплекс защитных методов должен сочетать как удобство, гибкость и оперативность использования, так и надежную защиту от злоумышленников циркулирующей в системе информации.

Литература

    Гмурман. А.И . Информационная безопасность / А.И. Гмурман - М.: «БИТ-М», 2004.-387с.

    Анин Б.А. Защита компьютерной информации. – Спб.: БХВ-Петербург. 2000. – 384с.

    МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ 7 3.1 Криптография и криптоанализ 9 3.2 Требования к... Дрофа 2000 .– 235с ХоффманД.Д. Современные методы защиты информации .- М.: Бином 1980.-330с Федеральный закон...

  1. Защита информации и информационная безопасность (2)

    Реферат >> Информатика

    ... защиты информации (правовая защита информации , техническая защита информации , защита экономической информации и т.д.). Организационные методы защиты информации и защита информации в России обладают следующими свойствами: Методы и средства защиты информации ...

Защита от несанкционированного доступа к информации. Для

защиты от несанкционированного доступа к данным, хранящимся на компьютере, используются пароли. Компьютер разрешает доступ к своим ресурсам только тем пользователям, которые зарегистрированы и ввели правильный пароль. Каждому конкретному пользователю может быть разрешен доступ только к определенным информационным ресурсам. При этом может производиться регистрация всех попыток несанкционированного доступа.

Защита с использованием пароля используется при загрузке операционной системы (при загрузке системы пользователь должен ввести свой пароль). Вход по паролю может быть установлен в программе BIOS Setup, компьютер не начнет загрузку операционной системы, если не введен правильный пароль. Преодолеть такую защиту нелегко, более того, возникнут серьезные проблемы доступа к данным, если пользователь забудет этот пароль.

От несанкционированного доступа может быть защищен каждый диск, папка и файл локального компьютера. Для них могут быть установлены определенные права доступа (полный, только чтение, по паролю), причем права могут быть различными для различных пользователей.

В настоящее время для защиты от несанкционированного доступа к информации все более часто используются биометрические системы идентификации. Используемые в этих системах характеристики являются неотъемлемыми качествами личности человека и поэтому не могут быть утерянными и подделанными. К биометрическим системам защиты информации относятся системы идентификации по отпечаткам пальцев, системы распознавания речи, а также системы идентификации по радужной оболочке глаза.

Идентификация по отпечаткам пальцев. Оптические сканеры считывания отпечатков пальцев устанавливаются на ноутбуки, мыши, клавиатуры, flash-диски, а также применяются в виде отдельных внешних устройств и терминалов (например, в аэропортах и банках).

Если узор отпечатка пальца не совпадает с узором допущенного к информации пользователя, то доступ к информации невозможен.

Идентификация по характеристикам речи. Идентификация человека по голосу - один из традиционных способов распознавания, интерес к этому методу связан и с прогнозами внедрения голосовых интерфейсов в операционные системы. Можно легко узнать собеседника по телефону, не видя его. Также можно определить психологическое состояние по эмоциональной окраске голоса. Голосовая идентификация бесконтактна и существуют системы ограничения доступа к информации на основании частотного анализа речи.

Рис. 6.49.

Каждому человеку присуща индивидуальная частотная характеристика каждого звука (фонемы).

В романе А.И. Солженицина «В круге первом» описана голосовая идентификация человека еще в 40-е гг. прошлого века.

Рис. 6.50.

Идентификация по изображению лица. Для идентификации личности часто используется технологии распознавания по лицу. Они ненавязчивы, так как распознавание человека происходит на расстоянии, без задержек и отвлечения внимания и не ограничивают пользователя в свободе. По лицу человека можно узнать его историю, симпатии и антипатии, болезни, эмоциональное состояние, чувства и намерения по отношению к окружающим. Все это представляет особый интерес для автоматического распознавания лиц (например, для выявления потенциальных преступников).

Идентификационные признаки учитывают форму лица, его цвет, а также цвет волос. К важным признакам можно отнести также координаты точек лица в местах, соответствующих смене контраста (брови, глаза, нос, уши, рот и овал).

В настоящее время начинается выдача новых загранпаспортов, в микросхеме которых хранится цифровая фотография владельца паспорта.

Идентификация по радужной оболочке глаза. Радужная оболочка глаза является уникальной для каждого человека биометрической характеристикой. Она формируется в первые полтора года жизни и остается практически без изменений в течение всей жизни.

Рис. 6.51.

Идентификация по ладони руки. Практически все о конкретном человеке можно прочитать по ладони его руки. В биометрике в целях идентификации используется простая геометрия руки - размеры и форма, а также некоторые информационные знаки на тыльной стороне руки (образы на сгибах между фалангами пальцев, узоры расположения кровеносных сосудов).

Сканеры идентификации по ладони руки установлены в некоторых аэропортах, банках и на атомных электростанциях.

Рис. 6.52.

Физическая защита данных на дисках. Для обеспечения большей скорости чтения (записи) и надежности хранения данных на жестких дисках используются RAID-массивы (Redundant Arrays of Independent Disks - избыточный массив независимых дисков). Несколько жестких дисков подключаются к RAID-контроллеру, который рассматривает их как единый логический носитель информации.

Существует два способа реализации RAID-массива: аппаратный и программный. Аппаратный дисковый массив состоит из нескольких жестких дисков, управляемых при помощи специальной платы контроллера RAID-массива. Программный RAID-массив реализуется при помощи специального драйвера. В программный массив организуются дисковые разделы, которые могут занимать как весь диск, так и его часть. Программные RAID-массивы, как правило, менее надежны, чем аппаратные, но обеспечивают более высокую скорость работы с данными.

Существует несколько разновидностей RAID-массивов, так называемых уровней. Операционные системы поддерживаются несколько уровней RAID-массивов.

RAID 0. Для создания массива этого уровня понадобится как минимум два диска одинакового размера. Запись осуществляется по принципу чередования: данные делятся на порции одинакового размера (А1, А2, АЗ и т.д.) и поочередно распределяются по всем дискам, входящим в массив (рис. 6.53). Поскольку запись ведется на все диски, при отказе одного из них будут утрачены все хранившиеся на массиве данные, однако запись и чтение на разных дисках происходит параллельно и соответственно быстрее.

Рис. 6.53.

RAID 1. Массивы этого уровня построены по принципу зеркалирования, при котором все порции данных (Al, А2, АЗ и т.д.), записанные на одном диске, дублируются на другом (рис. 6.54). Для создания такого массива потребуются два или более дисков одинакового размера. Избыточность обеспечивает отказоустойчивость массива: в случае выхода из строя одного из дисков, данные на другом остаются неповрежденными. Расплата за надежность - фактическое сокращение дискового пространства вдвое. Скорость чтения и записи остается на уровне обычного жесткого диска.

ОБЛАСНОЕ КОМУНАЛЬНОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ

ИП «СТРАТЕГИЯ»

Кафедра экономической кибернетики

Реферат на тему:

«Защита информации»

Выполнил

Студент группы С-06-51

Чернов Артем

Проверил

Преподаватель:

Беличенко С.П.

Желтые Воды

Введение

Глава 1 Проблемы защиты информации человеком и обществом

1.1 Использование информации

1.1.1 Организация информации

1.2 Угроза информации

1.2.1 Вирусы характеристика классификация

1.2.2 Несанкционированный доступ

1.2.3 Проблемы защиты информации Интернете

Глава 2 Сравнительный анализ и характеристики способов защиты информации

2.1 Защита от вирусов

2.2 Защита информации в Интернете.

Сводная таблица антивирусных программ

Заключение

Список использованных источников

Введение

Мы живем на стыке двух тысячелетий, когда человечество вступило в эпоху новой научно-технической революции.

К концу двадцатого века люди овладели многими тайнами превращения вещества и энергии и сумели использовать эти знания для улучшения своей жизни. Но кроме вещества и энергии в жизни человека огромную роль играет еще одна составляющая - информация. Это самые разнообразные сведения, сообщения, известия, знания, умения.

В середине прошлого столетия появились специальные устройства - компьютеры, ориентированные на хранение и преобразование информации и произошла компьютерная революция.

Сегодня массовое применение персональных компьютеров, к сожалению, оказалось связанным с появлением самовоспроизводящихся программ-вирусов, препятствующих нормальной работе компьютера, разрушающих файловую структуру дисков и наносящих ущерб хранимой в компьютере информации.

Информацией владеют и используют её все люди без исключения. Каждый человек решает для себя, какую информацию ему необходимо получить, какая информация не должна быть доступна другим и т.д. Человеку легко, хранить информацию, которая у него в голове, а как быть, если информация занесена в «мозг машины», к которой имеют доступ многие люди.

Многие знают, что существуют различные способы защиты информации. А от чего, и от кого её надо защищать? И как это правильно сделать?

То, что эти вопросы возникают, говорит о том, что тема в настоящее время актуальна. В курсовой работе я постарался ответить на эти вопросы, поставив перед собой

Цель: Выявление источников угрозы информации и определение способов защиты от них.

Задачи: Изучить уровень разработанности проблемы в литературе. Выявить основные источники угрозы информации. Описать способы защиты. Составить сравнительную таблицу антивирусных программ. Дать рекомендации по использованию этих программ.

Метод работы - анализ печатных изданий по данной теме. Анализ данных полученных методом сравнения.

Глава I Проблемы защиты информации человеком и обществом.

1.1 Использование информации

Информационные ресурсы в современном обществе играют не мень-шую, а нередко и большую роль, чем ресурсы материальные. Знания, ко-му, когда и где продать товар, может цениться не меньше, чем соб-ственно товар и в этом плане динамика развития общества сви--детельствует о том, что на "весах" материальных и информационных ресурсов последние начинают превалировать, причем тем силь--нее, чем более общество открыто, чем более развиты в нем средства коммуникации, чем большей информацией оно располагает.

С позиций рынка информация давно уже стала товаром, и это об-сто-ятельство требует интенсивного развития практики, промышленности и теории компьютеризации общества. Компьютер как информационная среда не только позволил совершить качественный скачек в организации промышленности, науки и рынка, но он определил новые само ценные области производства: вычислительная техника, теле-ком-муникации, программные продукты.

Тенденции компьютеризации общества связаны с появлением новых профессий, связанных с вычислительной техникой, и различных категорий пользователей ЭВМ. Если в 60-70е годы в этой сфере доминировали специалисты по вычислительной технике (инженеры-эле-к-тро-ники и программисты), создающие новые средства вычислительной техники и новые пакеты прикладных программ, то сегодня интен-сив-но расширяется категория пользователей ЭВМ - представителей са-мых разных областей знаний, не являющихся специалистами по компьютерам в узком смысле, но умеющих использовать их для решения своих специфических задач.

Пользователь ЭВМ (или конечный пользователь) должен знать об-щие принципы организации информационных процессов в компьютерной среде, уметь выбрать нужные ему информационные системы и тех-ни-ческие средства и быстро освоить их применительно к своей предметной области. Учитывая интенсивное развитие вычислительной тех-ники и во многом насыщенность рынка программных продуктов, два последних качества приобретают особое значение.

1.1.1 Организация информации

хранение информации в памяти ЭВМ - одна из основных функций компьютера. Любая информация хранится с использованием особой сим-вольной формы, которая использует бинарный (двоичный) набор изображающих знаков: (0 и 1). Выбор такой формы определяется реализацией аппаратуры ЭВМ (электронными схемами), составляющими схемотехнику компьютера, в основе которой лежит использование дво-ичного элемента хранения данных. Такой элемент (триггер) име-ет два устойчивых состояния, условно обозначаемых как 1 (еди-ни-ца) и 0 (ноль), и способен хранить минимальную порцию информации, называемую бит (этот термин произведен от английского "binary digit" - двоичная цифра).

Понятие бита как минимальной единицы информации легко иллюстрируется простым примером. Допустим, Вы задаете собеседнику вопрос "Владеете ли Вы компьютерной грамотностью?", заранее точ-но зная, что он ответит "Да". Получаете ли Вы при этом, какую ли-бо информацию? Нет, Вы остаетесь при своих знаниях, а Ваш вопрос в этой ситуации либо лишен всякого смысла, либо относится к риторическим.

Ситуация меняется, если Вы задаете тот же вопрос в ожидании по-лучить один из двух возможных ответов: "Да" или "Нет". Задавая вопрос, Вы не владеете никакой информацией, т.е. находитесь в состоянии полной неопределенности. Получая ответ, Вы устраняете эту неопределенность и, следовательно, получаете информацию. Та-ким образом, двоичный набор возможных от--ве-тов, несущих информацию, является ми-ни--мальным. Следовательно, он определяет ми-ни-маль-но возможную порцию получаемой информации.

Два бита несут информацию, достаточную для устранения неопределенности, заключающейся в двух вопросах при двоичной системе от-ветов и т.д.

преобразование информации из любой привычной нам формы (ес-те-с-т-венной формы) в форму хранения данных в компьютере (кодовую форму) связано с процессом кодирования. В общем случае этот процесс перехода от естественной формы к кодовой основан на из-ме-не-нии набора изображающих знаков (алфавита). Например, любой изображающий знак естественной формы (символ) хранится в памяти ЭВМ в виде кодовой комбинации из 8-ми бит, совокупность которых образует байт - основной элемент хранения данных в компьютере.

обратный процесс перехода от кодовой формы к естественной называется декодированием. Набор правил кодирования и декодирования определяет кодовую форму представления данных или просто код. (Разумеется, процессы кодирования, и декодирования в компьютере осуществляются авто-ма-ти-чески без участия конечного пользо-ва-те-ля).

Одни и те же данные могут быть представлены в компьютере в различных кодах и соответственно по-разному интерпретированы ис-пол-нительной системой компьютера.

Например, символ "1" (единица) может быть представлен в зна-ко-вой (символьной) кодовой форме, мо-жет быть представлен как целое число со знаком (+1) в коде целых чисел, как положительное целое без знака в коде кардинальных чисел, как ве-щественное число (1.) в коде вещественных чисел, как эле-мент логической информации (ло--ги-чес-кая единица - "истина") в ко-де представления логических данных. при этом любое из таких ко-до-вых представлений связано

не только с собственным видом интерпретации, но и с различными кодовыми комбинациями, кодирующими единицу.

1.2 Угроза информации

1.2.1 Вирусы характеристика классификация.

Можно привести массу фактов, свидетельствующих о том, что угроза информационному ресурсу возрастает с каждым днем, подвергая в панику ответственных лиц в банках, на предприятиях и в компаниях во всем мире. И угроза эта исходит от компьютерных вирусов, которые искажают или уничтожают жизненно важную, ценную информацию, что может привести не только к финансовым потерям, но и к человеческим жертвам.

Вирус - это специально написанная небольшая по размерам программа, которая может "приписывать" себя к другим программам (т.е. "заражать" их), а также выполнять различные нежелательные действия на компьютере. Программа, внутри которой находится вирус, называется "зараженной". Когда такая программа начинает работу, то сначала управление получает вирус. Вирус находит и "заражает" другие программы, а также выполняет какие-нибудь вредные действия (например, портит файлы или таблицу размещения файлов на диске, "засоряет" оперативную память и т.д.). Для маскировки вируса действия по заражению других программ и нанесению вреда могут выполняться не всегда, а, скажем, при выполнении определенных условий. После того как вирус выполнит нужные ему действия, он передает управление той программе, в которой он находится, и она работает также, как обычно. Тем самым внешне работа зараженной программы выглядит так же, как и незараженной. Разновидности вирусов устроены так, что при запуске зараженной программы вирус остается резидентно, т.е. до перезагрузки DOS, компьютера и время от времени заражает программы и выполняет вредные действия на компьютере.

Компьютерный вирус может испортить, т.е. изменить ненадлежащим образом, любой файл на имеющих в компьютере дисках. Но некоторые виды файлов вирус может "заразить". Это означает, что вирус может "внедриться" в эти файлы, т.е. изменить их так, что они будут содержать вирус, который при некоторых обстоятельствах может начать свою работу.

Следует заметить, что тексты программ и документов, информационные файлы без данных, таблицы табличных процессоров и другие аналогичные файлы не могут быть заражены вирусом, он может их только испортить.

В настоящее время известно более 87800 вирусов, число которых непрерывно растет. Известны случаи, когда создавались учебные пособия, помогающие в написании вирусов.

Основные виды вирусов: загрузочные, файловые, файлово-загрузочные. Наиболее опасный вид вирусов - полиморфные. Из истории компьютерной вирусологии ясно, что любая оригинальная компьютерная разработка заставляет создателей антивирусов приспосабливаться к новым технологиям, постоянно усовершенствовать антивирусные программы.

Причины появления и распространения вирусов скрыты с одной стороны в психологии человека, с другой стороны - с отсутствием средств защиты у операционной системы.

Основные пути проникновения вирусов - съемные диски и компьютерные сети. Чтобы этого не случилось, соблюдайте меры по защите. Также для обнаружения, удаления и защиты от компьютерных вирусов разработано несколько видов следствием не вполне ясного понимания предмета.

Вирус - программа, обладающая способностью к самовоспроизведению. Такая способность является единственным средством, присущим всем типам вирусов. Но не только вирусы способны к самовоспроизведению. Любая операционная система и еще множество программ способны создавать собственные копии. Копии же вируса не только не обязаны полностью совпадать с оригиналом, но, и могут вообще с ним не совпадать!

Вирус не может существовать в «полной изоляции»: сегодня нельзя представить себе вирус, который не использует код других программ, информацию о файловой структуре или даже просто имена других программ. Причина понятна: вирус должен каким-нибудь способом обеспечить передачу себе управления.

В зависимости от среды обитания вирусы можно разделить на сетевые, файловые, загрузочные и файлово-загрузочные. Сетевые вирусы распространяются по различным компьютерным сетям. Файловые вирусы внедряются главным образом в исполняемые модули, т. е. В файлы, имеющие расширения COM и EXE. Файловые вирусы могут внедряться и в другие типы файлов, но, как правило, записанные в таких файлах, они никогда не получают управление и, следовательно, теряют способность к размножению. Загрузочные вирусы внедряются в загрузочный сектор диска (Boot-с) или в сектор, содержащий программу загрузки системного диска (Master Boot Record). Файлово-загрузочные вирусы заражают как файлы, так и загрузочные сектора дисков.

По способу заражения вирусы делятся на резидентные и нерезидентные. Резидентный вирус при заражении (инфицировании) компьютера оставляет в оперативной памяти свою резидентную часть, которая потом перехватывает обращение операционной системы к объектам заражения (файлам, загрузочным секторам дисков и т. п.) и внедряется в них. Резидентные вирусы находятся в памяти и являются активными вплоть до выключения или перезагрузки компьютера. Нерезидентные вирусы не заражают память компьютера и являются активными ограниченное время.

По степени воздействия вирусы можно разделить на следующие виды:

неопасные, не мешающие работе компьютера, но уменьшающие объем свободной оперативной памяти и памяти на дисках, действия таких вирусов проявляются в каких-либо графических или звуковых эффектах

опасные вирусы, которые могут привести к различным нарушениям в работе компьютера очень опасные, воздействие которых может привести к потере программ, уничтожению данных, стиранию информации в системных областях диска.

ПРОЯВЛЕНИЕ НАЛИЧИЯ ВИРУСА В РАБОТЕ НА ПЭВМ.

Все действия вируса могут выполняться достаточно быстро и без выдачи каких-либо сообщений, поэтому пользователю очень трудно заметить, что в компьютере происходит что-то необычное.

Пока на компьютере заражено относительно мало программ, наличие вируса может быть практически незаметно. Однако по прошествии некоторого времени на компьютере начинает твориться что-то странное, например:

некоторые программы перестают работать или начинают работать неправильно;

на экран выводятся посторонние сообщения, символы и т.д.;

работа на компьютере существенно замедляется;

некоторые файлы оказываются испорченными и т.д.

К этому моменту, как правило, уже достаточно много (или даже большинство) программ являются зараженными вирусом, а некоторые файлы и диски - испорченными. Более того, зараженные программы с одного компьютера могли быть перенесены с помощью дискет или по локальной сети на другие компьютеры.

Некоторые виды вирусов ведут себя еще более коварно. Они вначале незаметно заражают большое число программ или дисков, а потом причиняют очень серьезные повреждения, например, формируют весь жесткий диск на компьютере. А бывают вирусы, которые стараются вести себя как можно более незаметно, но понемногу и постепенно портят данные на жестком диске компьютера.

Таким образом, если не предпринимать мер по защите от вируса, то последствия заражения компьютера могут быть очень серьезными.

РАЗНОВИДНОСТИ КОМПЬЮТЕРНЫХ ВИРУСОВ

Каждая конкретная разновидность вируса может заражать только один или два типа файлов. Чаще всего встречаются вирусы, заражающие исполнимые файлы. Некоторые вирусы заражают и файлы, и загрузочные области дисков. Вирусы, заражающие драйверы устройств, встречаются крайне редко, обычно такие вирусы умеют заражать и исполнимые файлы.

В последнее время получили распространение вирусы нового типа - вирусы, имеющие файловую систему на диске. Эти вирусы обычно называются DIR. Т, вирусы прячут свое тело в некоторый участок диска (обычно - в последний кластер диска) и помечают его в таблице размещения файлов (FAT) как конец файла.

Чтобы скрыть обнаружение, некоторые вирусы применяют довольно хитрые приемы маскировки. Я расскажу о двух из них: "невидимых" и самомодифицирующихся вирусах.

"НЕВИДИМЫЕ" вирусы. Многие резидентные вирусы (и файловые, и загрузочные) предотвращают свое обнаружение тем, что перехватывают обращения DOS (и тем самым прикладных программ) к зараженным файлам и областям диска и выдают их в исходном (незараженном) виде. Разумеется, этот эффект наблюдается только на зараженном компьютере - на "чистом" компьютере изменения в файлах и загрузочных областях

диска можно легко обнаружить.

САМОМОДИФИЦИРУЮЩИЕСЯ вирусы. Другой способ, применяемый вирусами для того, чтобы укрыться от обнаружения, - модификация своего тела. Многие вирусы хранят большую часть своего тела в закодированном виде, чтобы с помощью дизассемблеров нельзя было разобраться в механизме их работы.

Самомодифицирующиеся вирусы используют этот прием и часто меняют параметры этой кодировки, а кроме того, изменяют и свою стартовую часть, которая служит для раскодировки остальных команд вируса. Таким образом, в теле подобного вируса не имеется ни одной постоянной цепочки байтов, по которой можно было бы идентифицировать вирус. Это, естественно, затрудняет нахождение таких вирусов программами-детекторами.

1.2.2 Несанкционированный доступ.

В вычислительной технике понятие безопасности является весьма широким. Оно подразумевает и надежность работы компьютера, и сохранность ценных данных, и защиту информации от внесения в нее изменений неуполномоченными лицами, и сохранение тайны переписки в электронной связи.

Разумеется, во всех цивилизованных странах на безопасности граждан стоят законы, но в вычислительной техники правоприменительная практика пока не развита, а законотворческий процесс не успевает за развитием технологий, и надежность работы компьютерных систем во многом опирается на меры самозащиты.

1.2.3 Проблемы защиты информации Интернете.

Internet - глобальная компьютерная сеть, охватывающая весь мир. Сегодня Internet имеет около 15 миллионов абонентов в более чем 150 странах мира. Ежемесячно размер сети увеличивается на 7-10%. Internet образует как бы ядро, обеспечивающее связь различных информационных сетей, принадлежащих различным учреждениям во всем мире, одна с другой.

Если ранее сеть использовалась исключительно в качестве среды передачи файлов и сообщений электронной почты, то сегодня решаются более сложные задачи распределенного доступа к ресурсам. Около двух лет назад были созданы оболочки, поддерживающие функции сетевого поиска и доступа к распределенным информационным ресурсам, электронным архивам.

Internet, служившая когда-то исключительно исследовательским и учебным группам, чьи интересы простирались вплоть до доступа к суперкомпьютерам, становится все более популярной в деловом мире.

Компании соблазняют быстрота, дешевая глобальная связь, удобство для проведения совместных работ, доступные программы, уникальная база данных сети Internet. Они рассматривают глобальную сеть как дополнение к своим собственным локальной сетям.

При низкой стоимости услуг (часто это только фиксированная ежемесячная плата за используемые линии или телефон) пользователи могут получить доступ к коммерческим и некоммерческим информационным службам США, Канады, Австралии и многих европейских стран. В архивах свободного доступа сети Internet можно найти информацию практически по всем сферам человеческой деятельности, начиная с новых научных открытий до прогноза погоды на завтра.

Internet и информационная безопасность несовместны по самой природе Internet. Она родилась как чисто корпоративная сеть, однако, в настоящее время с помощью единого стека протоколов TCP/IP и единого адресного пространства объединяет не только корпоративные и ведомственные сети (образовательные, государственные, коммерческие, военные и т.д.), являющиеся, по определению, сетями с ограниченным доступом, но и рядовых пользователей, которые имеют возможность получить прямой доступ в Internet со своих домашних компьютеров с помощью модемов и телефонной сети общего пользования.

Как известно, чем проще доступ в Сеть, тем хуже ее информационная безопасность, поэтому с полным основанием можно сказать, что изначальная простота доступа в Internet - хуже воровства, так как пользователь может даже и не узнать, что у него были скопированы - файлы и программы, не говоря уже о возможности их порчи и корректировки.

Что же определяет бурный рост Internet, характеризующийся постоянным ростом числа пользователей? Ответ прост - «халява», то есть дешевизна программного обеспечения (TCP/IP), которое в настоящее время включено начиная с Windows 95, легкость и дешевизна доступа в Internet (либо с помощью IP-адреса, либо с помощью провайдера) и ко всем мировым информационным ресурсам.

Платой за пользование Internet является всеобщее снижение информационной безопасности, поэтому для предотвращения несанкционированного доступа к своим компьютерам все корпоративные и ведомственные сети, а также предприятия, использующие технологию intranet, ставят фильтры (fire-wall) между внутренней сетью и Internet, что фактически означает выход из единого адресного пространства. Еще большую безопасность даст отход от протокола TCP/IP и доступ в Internet через шлюзы.

Этот переход можно осуществлять одновременно с процессом построения всемирной информационной сети общего пользования, на базе использования сетевых компьютеров, которые с помощью сетевой карты и кабельного модема обеспечивают высокоскоростной доступ к локальному Web-серверу через сеть кабельного телевидения.

Для решения этих и других вопросов при переходе к новой архитектуре

Internet нужно предусмотреть следующее:

Во-первых, ликвидировать физическую связь между будущей Internet и корпоративными и ведомственными сетями, сохранив между ними лишь информационную связь через систему World Wide Web.

Во-вторых, заменить маршрутизаторы на коммутаторы, исключив обработку в узлах IP-протокола и заменив его на режим трансляции кадров Ethernet, при котором процесс коммутации сводится к простой операции сравнения MAC-адресов.

В-третьих, перейти в новое единое адресное пространство на базе физических адресов доступа к среде передачи (MAC-уровень), привязанное к географическому расположению сети, и позволяющее в рамках 48-бит создать адреса для более чем 64 триллионов независимых узлов.

Безопасность данных является одной из главных проблем в Internet. Появляются все новые и новые страшные истории о том, как компьютерные взломщики, использующие все более изощренные приемы, проникают в чужие базы данных. Разумеется, все это не способствует популярности Internet в деловых кругах. Одна только мысль о том, что какие-нибудь хулиганы или, что еще хуже, конкуренты, смогут получить доступ к архивам коммерческих данных, заставляет руководство корпораций отказываться от использования открытых информационных систем. Специалисты утверждают, что подобные опасения безосновательны, так как у компаний, имеющих доступ и к открытым, и частным сетям, практически равные шансы стать жертвами компьютерного террора.

Каждая организация, имеющая дело с какими бы то ни было ценностями, рано или поздно сталкивается с посягательством на них. Предусмотрительные начинают планировать защиту заранее, непредусмотрительные--после первого крупного “прокола”. Так или иначе, встает вопрос о том, что, как и от кого защищать. Обычно первая реакция на угрозу--стремление спрятать ценности в недоступное место и приставить к ним охрану. Это относительно несложно, если речь идет о таких ценностях, которые вам долго не понадобятся: убрали и забыли. Куда сложнее, если вам необходимо постоянно работать с ними. Каждое обращение в хранилище за вашими ценностями потребует выполнения особой процедуры, отнимет время и создаст дополнительные неудобства. Такова дилемма безопасности: приходится делать выбор между защищенностью вашего имущества и его доступностью для вас, а значит, и возможностью полезного использования.

Все это справедливо и в отношении информации. Например, база данных, содержащая конфиденциальные сведения, лишь тогда полностью защищена от посягательств, когда она находится на дисках, снятых с компьютера и убранных в охраняемое место. Как только вы установили эти диски в компьютер и начали использовать, появляется сразу несколько каналов, по которым злоумышленник, в принципе, имеет возможность получить к вашим тайнам доступ без вашего ведома. Иными словами, ваша информация либо недоступна для всех, включая и вас, либо не защищена на сто процентов.

Может показаться, что из этой ситуации нет выхода, но информационная безопасность сродни безопасности мореплавания: и то, и другое возможно лишь с учетом некоторой допустимой степени риска.

В области информации дилемма безопасности формулируется следующим образом: следует выбирать между защищенностью системы и ее открытостью. Правильнее, впрочем, говорить не о выборе, а о балансе, так как система, не обладающая свойством открытости, не может быть использована.

В банковской сфере проблема безопасности информации осложняется двумя факторами: во-первых, почти все ценности, с которыми имеет дело банк (кроме наличных денег и еще кое-чего), существуют лишь в виде той или иной информации. Во-вторых, банк не может существовать без связей с внешним миром: без клиентов, корреспондентов и т. п. При этом по внешним связям обязательно передается та самая информация, выражающая собой ценности, с которыми работает банк (либо сведения об этих ценностях и их движении, которые иногда стоят дороже самих ценностей). Извне приходят документы, по которым банк переводит деньги с одного счета на другой. Вовне банк передает распоряжения о движении средств по корреспондентским счетам, так что открытость банка задана а priori.

Стоит отметить, что эти соображения справедливы по отношению не только к автоматизированным системам, но и к системам, построенным на традиционном бумажном документообороте и не использующим иных связей, кроме курьерской почты. Автоматизация добавила головной боли службам безопасности, а новые тенденции развития сферы банковских услуг, целиком, основанные на информационных технологиях, усугубляют проблему.

Глава II Сравнительный анализ и характеристики способов защиты информации.

2.1 Защита от вирусов.

МЕТОДЫ ЗАЩИТЫ ОТ КОМПЬЮТЕРНЫХ ВИРУСОВ

Каким бы не был вирус, пользователю необходимо знать основные методы защиты от компьютерных вирусов.

Для защиты от вирусов можно использовать:

общие средства защиты информации, которые полезны также и как страховка от порчи дисков, неправильно работающих программ или ошибочных действий пользователя;

профилактические меры, позволяющие уменьшить вероятность заражения вирусов;

специальные программы для защиты от вирусов.

Общие средства защиты информации полезны не только для защиты от вирусов. Имеются две основные разновидности этих средств:

копирование информации - создание копий файлов и системных областей диска;

средства разграничения доступа предотвращает несанкционированное использование информации, в частности, защиту от изменений программ и данных вирусами, неправильно работающими программами и ошибочными действиями пользователя.

Общие средства защиты информации очень важны для защиты от вирусов, все же их недостаточно. Необходимо и применение специализированных программ для защиты от вирусов. Эти программы можно разделить на несколько видов: детекторы, доктора (фаги), ревизоры, доктора-ревизоры, фильтры и вакцины (иммунизаторы).

ДЕТЕКТОРЫ позволяют обнаруживать файлы, зараженные одним из нескольких известных вирусов. Эти программы проверяют, имеется ли в файлах на указанном пользователем диске специфическая для данного вируса комбинация байтов. При ее обнаружении в каком-либо файле на экран выводится соответствующее сообщение.

Многие детекторы имеют режимы лечения или уничтожения зараженных файлов.

Следует подчеркнуть, что программы-детекторы могут обнаруживать только те вирусы, которые ей "известны". Программа Scan

McAfee Associates и Aidstest позволяют обнаруживать всего несколько тысяч вирусов, но всего их более 80 тысяч! Некоторые программы-детекторы, например Norton AntiVirus или AVSP, могут настраивать на новые типы вирусов, им необходимо лишь указать комбинации байтов, присущие этим вирусам. Тем не менее, невозможно разработать такую программу, которая могла бы обнаруживать любой заранее неизвестный вирус.

Таким образом, из того, что программа не опознается детекторами как зараженная, не следует, что она здорова - в ней могут сидеть какой-нибудь новый вирус или слегка модифицированная версия старого вируса, неизвестные программам-детекторам.

Многие программы-детекторы (в том числе и Aidstest) не умеют обнаруживать заражение "невидимыми" вирусами, если такой вирус активен в памяти компьютера. Дело в том, что для чтения диска они используют функции DOS, перехватываются вирусом, который говорит, что все хорошо. Правда, Aidstest и др. программы могут выявить вирус путем просмотра оперативной памяти, но против некоторых "хитрых" вирусов это не помогает. Так что надежный диагноз программы-детекторы дают только при загрузке DOS с защищенной от записи дискеты, при этом копия программы-детектора также должна быть запущена с этой дискеты.

Некоторые детекторы, скажем, ADinf "Диалог-Наука", умеют ловить "невидимые" вирусы, даже когда они активны. Для этого они читают диск, не используя вызовы DOS. Этот метод работает не на всех дисководах.

Большинство программ-детекторов имеют функцию "доктора", т.е. пытаются вернуть зараженные файлы или области диска в их исходное состояние. Те файлы, которые не удалось восстановить, как правило, делаются неработоспособными или удаляются.

Большинство программ-докторов умеют "лечить" только от некоторого фиксированного набора вирусов, поэтому они быстро устаревают. Но некоторые программы могут обучаться не только способам обнаружения, но и способам лечения новых вирусов.

К таким программам относится AVSP

"Диалог-МГУ".

ПРОГРАММЫ-РЕВИЗОРЫ имеют две стадии работы. Сначала они запоминают сведения о состоянии программ и системных областей дисков (загрузочного сектора и сектора с таблицей разбиения жесткого диска). Предполагается, что в этот момент программы и системные области дисков не заражены. После этого с помощью программы-ревизора можно в любой момент сравнить состояние программ и системных областей дисков с исходным. О выявленных несоответствиях сообщается пользователю.

Чтобы проверка состояния программ и дисков проходила при каждой загрузке операционной системы, необходимо включить команду запуска программы-ревизора в командный файл AUTOEXEC.BAT. Это позволяет обнаружить заражение компьютерным вирусом, когда он еще не успел нанести большого вреда. Более того, та же программа-ревизор сможет найти поврежденные вирусом файлы.

Многие программы-ревизоры являются довольно "интеллектуальными" - они могут отличать изменения в файлах, вызванные, например, переходом к новой версии программы, от изменений, вносимых вирусом, и не поднимают ложной тревоги. Дело в том, что вирусы обычно изменяют файлы весьма специфическим образом и производят одинаковые изменения в разных программных файлах. Понятно, что в нормальной ситуации такие изменения практически никогда не встречаются, поэтому программа-ревизор, зафиксировав факт таких изменений, может с уверенностью сообщить, что они вызваны именно вирусом.

Следует заметить, что многие программы-ревизоры не умеют обнаруживать заражение "невидимыми" вирусами, если такой вирус активен в памяти компьютера. Но некоторые программы-ревизоры, например ADinf фи "Диалог-Наука", все, же умеют делать это, не используя вызовы DOS для чтения диска (правда, они работают не на всех дисководах). Увы, против некоторых "хитрых" вирусов все это бесполезно.

Для проверки того, не изменился ли файл, некоторые программы-ревизоры проверяют длину файла. Но эта проверка недостаточна - некоторые вирусы не изменяют длину зараженных файлов. Более надежная проверка - прочесть весь файл и вычислить его контрольную сумму. Изменить файл так, чтобы его контрольная сумма осталась прежней, практически невозможно.

В последнее время появились очень полезные гибриды ревизоров и докторов, т.е. ДОКТОРА-РЕВИЗОРЫ - программы, которые не только обнаруживают изменения в файлах и системных областях дисков, но и могут в случае изменений автоматически вернуть их в исходное состояние. Такие программы могут быть гораздо более универсальными, чем программы-доктора, поскольку при лечении они используют заранее сохраненную информацию о состоянии файлов и областей дисков. Это позволяет им вылечивать

файлы даже от тех вирусов, которые не были созданы на момент написания программы.

Но они могут лечить не от всех вирусов, а только от тех, которые используют "стандартные", известные на момент написания программы, механизмы заражения файлов.

Существуют также ПРОГРАММЫ-ФИЛЬТРЫ, которые располагаются резидентно в оперативной памяти компьютера и перехватывают те обращения к операционной системе, которые используются вирусами для размножения и нанесения вреда, и сообщают о них пользователя. Пользователь может разрешить или запретить выполнение соответствующей операции.

Некоторые программы-фильтры не "ловят" подозрительные действия, а проверяют вызываемые на выполнение программы на наличие вирусов. Это вызывает замедление работы компьютера.

Однако преимущества использования программ-фильтров весьма значительны - они позволяют обнаружить многие вирусы на самой ранней стадии, когда вирус еще не успел размножиться и что-либо испортить. Тем самым можно свести убытки от вируса к минимуму.

ПРОГРАММЫ-ВАКЦИНЫ, или ИММУНИЗАТОРЫ, модифицируют программы и диски таким образом, что это не отражается на работе программ, но тот вирус, от которого производится вакцинация, считает эти программы или диски уже зараженными. Эти программы крайне неэффективны.

Защита информации в Интернете.

Сейчас вряд ли кому-то надо доказывать, что при подключении к Internet Вы подвергаете риску безопасность Вашей локальной сети и конфиденциальность содержащейся в ней информации. По данным CERT Coordination Center в 1995 году было зарегистрировано 2421 инцидентов - взломов локальных сетей и серверов. По результатам опроса, проведенного Computer Security Institute (CSI) среди 500 наиболее крупных организаций, компаний и университетов с 1991 число незаконных вторжений возросло на 48.9 %, а потери, вызванные этими атаками, оцениваются в 66 млн. долларов США.

Одним из наиболее распространенных механизмов защиты от интернетовских бандитов - “хакеров” является применение межсетевых экранов - брандмауэров (firewalls).

Стоит отметить, что в следствии непрофессионализма администраторов и недостатков некоторых типов брандмауэров порядка 30% взломов совершается после установки защитных систем.

Не следует думать, что все изложенное выше - “заморские диковины”. Всем, кто еще не уверен, что Россия уверенно догоняет другие страны по числу взломов серверов и локальных сетей и принесенному ими ущербу, следует познакомиться с тематической подборкой материалов российской прессы и материалами Hack Zone (Zhurnal.Ru).

Не смотря на кажущийся правовой хаос в рассматриваемой области, любая деятельность по разработке, продаже и использованию средств защиты информации регулируется множеством законодательных и нормативных документов, а все используемые системы подлежат обязательной сертификации Государственной Технической Комиссией при президенте России.

2.3 Защита от несанкционированного доступа.

Известно, что алгоритмы защиты информации (прежде всего шифрования) можно реализовать как программным, так и аппаратным методом. Рассмотрим аппаратные шифраторы: почему они считаются 6oлee надежными и обеспечивающими лучшую защиту.

Что такое аппаратный шифратор.

Аппаратный шифратор по виду и по сути представляет co6oй обычное компьютерное «железо», чаще всего это плата расширения, вставляемая в разъем ISA или PCI системной платы ПK. Бывают и другие варианты, например в виде USB­ ключа с криптографическими функциями, но мы здесь рассмотрим классический вариант - шифратор для шины PCI.

Использовать целую плату только для функций шифрования - непозволительная роскошь, поэтому производители аппаратных шифраторов обычно стараются насытить их различными дополнительными возможностями, среди которых:

1. Генерация случайных чисел. Это нужно, прежде всего, для получения криптографических ключей. Кроме того, многие алгоритмы защиты используют их и для других целей, например алгоритм электронной подписи ГOCT P 34.10 - 2001. При каждом вычислении подписи ему необходимо новое случайное число.

2. Контроль входа на компьютер. При включении ПK устройство требует от пользователя ввести персональную информацию (например, вставить дискету с ключами). Работа будет разрешена только после того, как устройство опознает предъявленные ключи и сочтет их «своими». B противном случае придется разбирать системный блок и вынимать оттуда шифратор, чтобы загрузиться (однако, как известно, информация на ПK тоже может быть зашифрована).

3. Контроль целостности файлов операционной системы. Это не позволит злоумышленнику в ваше отсутствие изменить какие-либо данные. Шифратор хранит в себе список всех важных файлов с заранее рассчитанными для каждого контрольными суммами (или кэш­ значениями), и если при следующей загрузке не совпадет эталонная сумма, хотя 6ы одного из них, компьютер будет 6лoкиpoвaн.

Плата со всеми перечисленными возможностями называется устройством криптографической защиты данных - УKЗД.

Шифратор, выполняющий контроль входа на ПK и проверяющий целостность операционной системы, называют также «электронным замком». Ясно, что аналогия неполная - обычные замки существенно уступают этим интеллектуальным устройствам. Понятно, что последним не o6oйтиcь без программного обеспечения - необходима утилита, с помощью которой формируются ключи для пользователей и ведется их список для распознавания «свой/чужой». Кроме этого, требуется приложение для выбора важных файлов и расчета их контрольных сумм. Эти программы o6ычнo доступны только администратору по безопасности, который должен предварительно настроить все УKЗД для пользователей, а в случае возникновения проблем разбираться в их причинах.

Вообще, поставив на свой компьютер УKЗД, вы будете приятно удивлены уже при следующей загрузке: устройство проявится через несколько секунд после включения кнопки Power, как минимум, сообщив о себе и попросив ключи. Шифратор всегда перехватывает управление при загрузке IIK, после чего не так-то легко получить его обратно. УКЗД позволит продолжить загрузку только после всех своих проверок. Кстати, если IIK по какой-либо причине не отдаст управление шифратору, тот, немного подождав, все равно его зa6лoкиpyeт. И это также прибавит работы администратору по безопасности.

Структура шифраторов.

Рассмотрим теперь, из чего должно состоять УKЗД, чтобы выполнять эти непростые функции:

1. Блок управления -- основной модуль шифратора, который «заведует» работой всех остальных. Обычно реализуется на базе микро - контроллера, сейчас их предлагается немало и можно выбрать подходящий. Главное -- быстродействие и достаточное количество внутренних ресурсов, а также внешних портов для подключения всех необходимых модулей.

2. Контроллер системной шины ПК. Через него осуществляется основной обмен данными между УКЗД и компьютером.

3. Энергонезависимое запоминающее устройство (ЗУ) -- должно быть достаточно емким (несколько мегабайт) и допускать большое число треков записи. Здесь размещается программное обеспечение микроконтроллера, которое выполняется при инициализации устройства (т. е. когда шифратор перехватывает управление при загрузке компьютера).

4. Память журнала. Также представляет собой энергонезависимое ЗУ. Это действительно еще одна флэш-микросхема. Во избежание возможных коллизий память для программ и для журнала не должны o6ъeдимятьcя.

5. Шифропроцессор -- это специализированная микросхема или микросхема программируемой логики. Собственно, он и шифрует данные.

6. Генератор случайных чисел. Обычно представляет собой такое устройство, дающее статистически случаиный и непредсказуемый сигнал- белый шум. Это может быть, например, шумовой диод

7. Блок ввода ключевой информации. Обеспечивает защищённый приём ключей с ключевого носителя, через него также вводится идентификационная информация о пользователе, необходимая для решения вопроса «свойчужой».

8. Блок коммутаторов. Помимо перечисленных выше основных функций, УKЗД может по велению администратора безопасности ограничивать возможность работы с внешними устройствами: дисководами, CD-ROM и т.д.

Сводная таблица антивирусных программ

Название антивирусной программы

Общие характеристики

Положительные качества

Недостатки

Одна из самых известных антивирусных программ, совмещающие в себе функции детектора и доктора Д.Н. Лозинского.

При запуске Aidstest проверяет себя оперативную память на наличие известных ему вирусов и обезвреживает их.

Может создавать отчет о работе

После окончания обезвреживания вируса следует обязательно перезагрузить ЭВМ. Возможны случаи ложной тревоги, например при сжатии антивируса упаковщиком. Программа не имеет графического интерфейса, и режимы ее работы задаются с помощью ключей.

"Лечебная паутина"

Dr.Web также, как и Aidstest относится к классу детекторов докторов, но в отличие от послед него имеет так называемый "эвристический анализатор" - алгоритм, позволяющий обнаруживать неизвестные вирусы.

Пользователь может указать программе тестировать как весь диск, так и отдельные подкаталоги или группы файлов, либо же отказаться от проверки дисков и тестировать только оперативную память.

Как и Aidstest Doctor Web может создавать отчет о работе

При сканировании памяти нет стопроцентной гарантии, что "Лечебная паутина" обнаружит все вирусы, находящиеся там. Тестирование винчестера Dr.Web-ом занимает на много больше

времени, чем Aidstest-ом.

(Anti-Virus Software Protection)

Эта программа сочетает в себе и детектор, и доктор, и ревизор, и даже имеет некоторые функции резидентного фильтра

Антивирус может лечить как известные так и неизвестные вирусы. К тому же AVSP может лечить самомодифицирующиеся и Stealth-вирусы (невидимки). Очень удобна контекстная система подсказок, которая дает пояснения к каждому пункту меню. При комплексной проверке AVSP выводит также имена файлов, в которых произошли изменения, а также так называемую карту изменений

Вместе с вирусами программа отключает и некоторые другие резидентные программы Останавливается на файлах, у которых странное время создания.

Microsoft AntiVirus

Этот антивирус может работать в режимах детектора-доктора и ревизора. MSAV имеет дружественный интерфейс в стиле MS-Windows.

Хорошо реализована контекстная по-

мощь: подсказка есть практически к любому пункту меню, к любой ситуации. Универсально реализован доступ к пунктам меню: для этого можно использовать клавиши управления курсором, ключевые клавиши. В главном меню можно сменить диск (Select new drive), выбрать между проверкой без удаления вирусов (Detect) и с их удалением (Detect&Clean).

Серьёзным неудобством при использовании программы является то, что она сохраняет таблицы с данными о файлах не в одном файле, а разбрасывает их по всем директориям.

Advanced Diskinfo-scope

ADinf относится к классу программ-ревизоров.

Антивирус имеет высокую скорость работы, способен с успехом противостоять вирусам, находящимся в памяти. Он позволяет контролировать диск, читая его по секторам через BIOS и не используя системные прерывания DOS, которые может перехватить вирус.

Для лечения заражённых файлов применяется модуль ADinf CureModule, не входящий в пакет ADinf и поставляющийся отдельно.

Вывод.

На мой взгляд, из всех отечественных программ, рассмотренных, здесь Dr.Web является самой полной, логически завершенной антивирусной системой. Остальные программы находятся, как бы в стадии развития. Программы-фаги, в принципе, не могут достигнуть логического завершения, так как должны развиваться, чтобы противостоять новым вирусам, хотя ADinf уже пошел по пути усовершенствования интерфейса. Высок потенциал у программы AVSP, которая при соответствующей доработке (упрощении алгоритмов поиска Stealth-вирусов, введении низкоуровневой защиты, улучшении интерфейса) может занять высокие позиции в среде антивирусов.

Скачать:


Предварительный просмотр:

Тема урока: "Защита информации "

Цель урока: познакомить учащихся с понятиями информационной безопасности и защиты информации, основными проблемами и средствами защиты информации от них.

Задачи урока:

обучающие

  • ввести понятие "защита информации";
  • ввести понятие "средства защиты информации";
  • познакомить учащихся с правовыми, аппаратными и программными способами защиты информации;
  • познакомить учащихся с мерами защиты личной информации на ПК;
  • ввести понятия "цифровая подпись" и "закрытый ключ";
  • отработать навыки работы с прикладным программным обеспечением MS Word по защите информации;

развивающие

  • развивать умение обобщать и систематизировать знания;
  • развивать умение логически мыслить; анализировать и обобщать информацию;
  • развивать умение осуществлять самоконтроль в учебной деятельности;

воспитательные

  • воспитание ответственного отношения к соблюдению этических и правовых норм информационной деятельности.

Оборудование:

  • компьютеры;
  • комплекс мультимедиа (ПК, проектор);
  • презентация;
  • видеоролик;

Структура урока:

  1. Организационный этап (просмотр ролика, обозначение проблемы) – 3мин.
  2. Актуализация знаний – 5 мин

вопросы

  1. Какова роль информации в современном обществе?
  2. Почему современное общество называют информационным?
  3. Что такое, по Вашему, информатизация общества? Каковы кого особенности?
  4. Какие Вы используете меры защиты информации, чтобы ее не уничтожили, не похитили?
  5. Какие Вы знаете меры защиты информации.
  6. Как вы считаете как будут меняться методы защиты информации в зависимости от того кто является собственником?
  7. Какие примеры несанкционированного и непреднамеренного воздействия на информацию вы можете привести?
  1. Сообщение темы урока и постановка цели и задач.
  2. Объяснение нового материала – 12 мин.

Понятие «информация» сегодня употребляется весьма широко и разносторонне. Трудно найти такую область знаний, где бы оно не использовалось. Огромные информационные потоки буквально захлестывают людей. Как и всякий продукт, информация имеет потребителей, нуждающихся в ней, и потому обладает определенными потребительскими качествами, а также имеет и своих обладателей или производителей.

Защита информации – комплекс мероприятий, направленных на обеспечение важнейших аспектов информационной безопасности (целостность, доступность и, если нужно, конфиденциальность информации и ресурсов, используемых для ввода, хранения, обработки и передачи данных).

В области защиты информации и компьютерной безопасности в целом наиболее актуальными являются три группы проблем:

1. нарушение конфиденциальности информации;

2. нарушение целостности информации;

3. нарушение работоспособности информационно-вычислительных систем.

Огромные массивы информации хранятся в электронных архивах, обрабатываются в информационных системах и передаются по телекоммуникационным сетям. Основные свойства этой информации - конфиденциальность и целостность, должны поддерживаться законодательно, юридически, а также организационными, техническими и программными методами.

Средства защиты информации по методам реализации можно разделить на три группы:

Правовые.

Законодательная база в сфере информационной безопасности включает пакет Федеральных законов, Указов Президента РФ, постановлений Правительства РФ, межведомственных руководящих документов и стандартов.

Основополагающими документами по информационной безопасности в РФ являются Конституция РФ и Концепция национальной безопасности.

Закон РФ «Об информации, информатизации и защите информации» от 20 февраля 1995 года № 24-ФЗ - является одним из основных базовых законов в области защиты информации, который регламентирует отношения, возникающие при формировании и использовании информационных ресурсов Российской Федерации на основе сбора, накопления, хранения, распространения и предоставления потребителям документированной информации, а также при создании и использовании информационных технологий, при защите информации и прав субъектов, участвующих в информационных процессах и информатизации.

Пример уведомления, закон № 152.

Аппаратные.

  • средства контроля доступа
  • средства межсетевого экранирования
  • средства гарантированного хранения
  • средства защиты от сбоев
  • электропитания и защиты кабельной системы
  • инструментальные средства администратора безопасности

Программные.

  • Антивирусы лаборатории Касперского
  • Dr .Web
  • ESET NOD32
  • AVAST
  • McAfee Antivirus
  • Symantec

Потребности современной практической информатики привели к возникновению нетрадиционных задач защиты электронной информации, одной из которых является аутентификация электронной информации в условиях, когда обменивающиеся информацией стороны не доверяют друг другу. Эта проблема связана с созданием систем электронной цифровой подписи.

  1. Первичное закрепление знаний, выполнение практической работы – 7 мин

В связи с бурным использованием компьютеров в жизни человека, увеличением значимости вопросов по защите информации возникла потребность в квалифицированных специалистах.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Слайд 1
Защита информации

Слайд 2
Защита информации
– комплекс мероприятий, направленных на обеспечение важнейших аспектов информационной безопасности (целостность, доступность, конфиденциальность информации и ресурсов, используемых для ввода, хранения, обработки и передачи данных).

Слайд 3
Проблемы защиты информации
Нарушение конфиденциальностиинформации
Нарушение целостностиинформации
Нарушениеработоспособностиинформационно-вычислительныхсистем

Слайд 4
Законодательно-правовойуровень
Аппаратныйуровень
Программныйуровень
Средствазащиты

Слайд 5
Законодательно-правойуровень
Закон РФ «Об информации, информатизации и защите информации» от 20 февраля 1995 года № 24-ФЗ - является одним из основных базовых законов в области защиты информации, который регламентирует отношения, возникающие при формировании и использовании информационных ресурсов.

Слайд 6
ФЗ № 152 «О персональных данных » от 27 июля 2006 года обеспечивает защиту прав и свобод человека и гражданина при обработке его персональных данных, в том числе защиты прав на неприкосновенность частной жизни, личную и семейную тайну.
Законодательно-правойуровень

Слайд 7
Антивирусы лаборатории КасперскогоDr .WebESET NOD32AVASTMcAfee AntivirusSymantec
Программныйуровень

Слайд 8
Программныйуровень
Аутентификацией (установлением подлинности) называется проверка принадлежности субъекту доступа предъявленного им идентификатора и подтверждение его подлинности. Другими словами, аутентификация заключается в проверке: является ли подключающийся субъект тем, за кого он себя выдает.

Слайд 9
Программныйуровень
Цифровая подпись предназначена для защиты электронного документа и является результатом криптографического преобразования информации с использованием закрытого ключа.
Закрытый ключ – это ключ, которым заранее обмениваются два абонента, ведущие секретную переписку.
Цифровая подпись - это индивидуальный секретный шифр, ключ которого известен только владельцу.

Слайд 10
Аппаратныйуровень
Основные средства
средства контроля доступасредства межсетевого экранированиясредства гарантированного хранениясредства защиты от сбоевэлектропитания и защиты кабельной системыинструментальные средства администратора безопасности

Предварительный просмотр:

Практическая работа

«Защита текстового документа»

Цель работы – познакомиться с функциональными возможностями MS Word по защите информации ; создать схему в текстовом документе MS Word схему «Фишбоун» по приведенному алгоритму (см. Приложение).

Ход работы:

Таблица 1

Приложение

Рыбий скелет

(Схема «Фишбоун»)

Алгоритм составления схемы «Фишбоун»

  1. Провести горизонтальную стрелку через середину листа; дать название главной стрелке. Это главная (хребтовая) кость схемы;
  2. От главной кости нарисовать дополнительные «косточки» под углом 45 0 , каждая из них посвящена одной проблеме или группе проблем, подписать каждую из «косточек»; добавить дополнительные «косточки»;
  3. Продумать расположение разных частей проблемы так, чтобы наиболее важная находится в голове рыбы.